
Welcome to our new column on software
construction. We hope that you’ll enjoy follow-
ing this series as we explore the practical nuts-
and-bolts issues of building today’s software.

Before we start, though, we need to talk about
the column’s title. In some ways, “construction” is
an unfortunate term, in that the most immediate
(and often used) example involves building con-
struction, with the attendant idea of an initial and
inviolate architecture from which springs forth de-
sign and code.

Of course, nothing could be further from the
truth. Software development, including its con-
struction, is utterly unlike any other human en-
deavor. (Software development is also exactly the
same as all other human endeavors, but that’s a
topic for another time.) Software is unique in both
its malleability and its ephemerality; it is (to bor-
row the title of a Thomas Disch book) the dreams
our stuff is made of. Yet we cannot simply wish a
software system into being. We must create it us-
ing some semblance of engineering practice. This
tension between the nonrepeatable, ill-defined,
chaotic creative process and the scientific, repeat-
able, well-defined aspects of engineering is what
causes so much heartburn in practitioners, au-
thors, and scholars.

Is software engineering? Is it art? Is it craft?

Many authors and pundits have compelling argu-
ments for each of these viewpoints.1–3 This is un-
derstandable because all the views have merit—
software development is all these things, and this
plurality is what causes so much misunderstand-
ing. When should we act like engineers, and
when shouldn’t we?

Many organizations still view coding as merely
a mechanical activity. They take the position that
design and architecture are of paramount impor-
tance and that coding should be a rigorous, re-
peatable, mechanistic process that can be rele-
gated to inexpensive, inexperienced novices. We
wish these organizations the best of luck.

We’d like to think we know a better way. The
SWEBOK (Software Engineering Body of Knowl-
edge—view an online draft at www.swebok.org),
for instance, states unequivocally that coding is
far from a mechanistic translation of good design
into code, but instead is one of those messy, im-
precise human activities that requires creativity, in-
sight, and good communication skills. Good soft-
ware is grown organically and evolves; it is not
built slavishly and rigidly. Design and coding must
be flexible. We should not unduly constrain it in a
misguided attempt to turn coders into robots.

However, the way we construct software
should not be arbitrary. It must be perfectly con-
sistent, reliable, and repeatable, time after time.
And that’s the topic of this first column.

—Andy Hunt and Dave Thomas

References
1. P. McBreen, Software Craftsmanship: The New Impera-

tive, Addison-Wesley, Reading, Mass., 2001.
2. T. Bollinger, “The Interplay of Art and Science in Soft-

ware,” Computer, vol. 30, no. 10, Oct. 1997, pp. 128,
125–126.

3. W. Humphrey, Managing the Software Process, Addi-
son-Wesley, Reading, Mass., 1989.

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 1 1

software construction

Ubiquitous Automation
Civilization advances by extending the number of important operations we can perform without thinking.

—Alfred North Whitehead

E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

1 2 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

DEPT TITLE

I
f software construction is to in-
volve engineering, the process
must be consistent and repeat-
able. Without consistency, know-
ing how to build, test, or ship
someone else’s software (or even

your own software two years later) is
hard, if not impossible. Without re-
peatability, how can you guarantee
the results of a build or a test run—
how do you know the 100,000 CDs
you just burned contain the same
software you think you just tested?

The simple answer is discipline:
software construction must be disci-
plined if it is to succeed. But people
don’t seem to come that way; in gen-
eral, folks find discipline hard to take
and even harder to maintain. Fortu-
nately, there’s a pragmatic solution:
automate everything you can, so that
the development environment itself
provides the disciplined consistency
and repeatability needed to make the
process run smoothly and reliably.
This approach leaves developers free
to work on the more creative (and
fun) side of software construction,
which makes the programmers hap-
pier. At the same time, it makes the
accountants happier by creating a de-
velopment organization that is more
efficient and less prone to costly hu-
man-induced errors and omissions.

Compilation automation
If you do nothing else, make sure

that every developer on a project com-
piles his or her software the same way,
using the same tools, against the same
set of dependencies. Make sure this
compilation process is automated.

This advice might seem obvious,
but it’s surprising how often it’s ig-
nored. We know teams where some
developers compile using the auto-
matic dependencies calculated by
their integrated development environ-
ment, others use a second IDE, and
still others use command-line build
tools. The result? Hours wasted every
week tracking down problems that
aren’t really problems, as each devel-
oper tests against subtly different ex-
ecutables generated by his or her in-
dividual compilation system.

Nowadays, automated compila-
tions are pretty straightforward. Most
IDEs offer a single-key “compile the
project” command. If you’re using
Java from the command line, there’s
the Ant tool (http://jakarta.apache.org/
ant/index.html). In other environ-
ments, the “make” system, or less
common variants such as Aegis (www.
pcug.org.au/~millerp/aegis/aegis.html),
do the same job. Whatever the tool,
the ground rules are the same: provide
a single command that works out
what needs to be done, does it, and re-
ports any errors encountered.

Testing automation
During construction, we use unit

tests to try to find holes in our soft-
ware. (There are many other, equally
important, reasons for using unit
tests, but that’s the subject of another
article.) However, most developers
we’ve seen skip unit testing or at best
do it in an ad hoc way. The standard
technique goes something like this:

1. Write a wad of code.
2. Get scared enough about some as-

pect of it to feel the need to try it.
3. Write some kind of driver that in-

vokes the code just written. Add a
few print statements to the code
under test to verify it’s doing what
you thought it should.

4. Run the test, eyeball the output,
and then delete (or comment out)
the prints.

5. Go back to Step 1.

Let us be clear. This is not unit test-
ing. This is appeasing the gods. Why
invest in building tests only to throw
them away after you’ve run them
once? And why rely on simply scan-
ning the results when you can have
the computer check them for you?

Fortunately, easy-to-use automated
testing frameworks are available for
most common programming lan-
guages. A popular choice is the set of
xUnit frameworks, based on the
Gamma/Beck JUnit and SUnit systems
(www.xprogramming.com/software.
htm). We’ll look at these frameworks

SOFTWARE CONSTRUCTION

PURDUE UNIVERSITY
Department of Computer Sciences

The Department of Computer Sciences
at Purdue University invites applications
for tenure-track positions beginning Au-
gust 2002. Positions are available at the
assistant professor level; senior positions
will be considered for highly qualified ap-
plicants. Applications from outstanding
candidates in all areas of computer sci-
ence will be considered. Areas of particu-
lar interest include security, networking
and distributed systems, scientific com-
puting, and software engineering.

The Department of Computer Sciences
offers a stimulating and nurturing acade-
mic environment. Thirty-five faculty
members have research programs in
analysis of algorithms, bioinformatics,

compilers, databases, distributed and
parallel computing, geometric modeling
and scientific visualization, graphics, in-
formation security, networking and oper-
ating systems, programming languages,
scientific computing, and software engi-
neering. The department implements a
strategic plan for future growth which is
strongly supported by the higher admin-
istration. This plan includes a new build-
ing expected to be operational in 2004 to
accommodate the significant growth in
faculty size. Further information about
the department is available at
http://www.cs.purdue.edu.

Applicants should hold a Ph.D. in
Computer Science, or a closely related
discipline, and should be committed to
excellence in teaching and have demon-
strated strong potential for excellence in

research. Salary and benefits are highly
competitive. Special departmental and
university initiatives are available for ju-
nior faculty. Candidates should send a
curriculum vitae, a statement of career
objectives, and names and contact infor-
mation of at least three references to:

Chair, Faculty Search Committee
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398

Applications are being accepted now
and will be considered until the positions
are filled. Inquiries may be sent to

fac-search@cs.purdue.edu.
Purdue University is an Equal Opportu-

nity/Affirmative Action
employer. Women and minorities are es-

pecially encouraged to apply.

Career Opportunities

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 1 3

DEPT TITLE

in later articles. For now, it’s enough
to point out that they are simple to
use, composable (so you can build
suites of tests), and fully automated.

Remember when we talked about
making the build environment con-
sistent? Well, the same applies to
testing: you need repeatable test envi-
ronments. However, that’s not to say
they should all be the same. Test in a
wide variety of situations—some
bizarre, some commonplace. Expose
your code to the true range of target
environments. Do it as early as possi-
ble during development. And do it as
automatically as you can.

Once you can compile code with a
button press, and test it soup-to-nuts,
what’s next? Integration, reviews, re-
lease, perhaps—all fertile ground for
the seeds of automation. And then
there’s the lowly shipping process.
Here automation is especially crucial.
If you can’t reliably go from source
in the repository to code on a CD,
how do you know what you’re ship-
ping? Every delivery is a stressful sit-
uation, where each manual step must
be completed correctly if the four-bil-
lion-odd bits on the CD are to be the
correct ones. Too often, though,
transferring and replicating com-
pleted software is a heavily manual
process, one that allows the intro-
duction of all sorts of needless risks.
What this part of the whole process
needs is an automated delivery build.

What is an automated delivery
build? At a minimum, it involves
clean-room compilation, automated
running of the unit tests, automated
running of whatever functional tests
can be automated, and automated
collection of the deliverable compo-
nents (not forgetting documentation)
into some staging area. (Speaking of
documentation, how much do you
currently produce automatically? How
much could you? After all, the more
documentation you automate, the
more likely it will be up-to-date.)

Once you’ve generated your ship-
pable software, take it to the next
level, and automate the testing of the
result. Can the pile of bits you’re
proposing to deliver be installed in
typical customer environments? Does

it work when it gets there? Think
about how much of this process you
can automate, allowing the quality
assurance staff to concentrate on the
hard stuff.

Never underestimate the effort re-
quired to do all this. The cycle times
of testing the process are large. Every
small problem means starting again,
compiling and testing and so on.
However, there’s a trick: don’t leave
build automation until the end. In-
stead, make it part of the very first
project iteration. At this stage it will
be simple (if incomplete). Then ar-
range for it to run at least daily. This
has two advantages. First, the build’s
products give your quality assurance
folks something to work with: anyone
can take a build snapshot at any time.
Second, you get to find out that the
delivery build process failed the day it
failed. The fixes will be immediate
and incremental.

Other uses of automation
We’ve barely scratched this topic’s

surface. Consider that you needn’t
restrict automation
to the build or even
to just develop-
ment. Perhaps your
project has strict re-
porting require-
ments, review and
approval processes,
or other onerous
secretarial chores.
Where possible, try
to automate these
bits of drudgery as
well. There’s more
to constructing
software than just
constructing soft-
ware, and we can
leverage automa-
tion throughout the
process.

The cobbler’s
children

As we said in
The Pragmatic Pro-
grammer (Addison-
Wesley, 2000), the
cobbler’s children

have no shoes. Often, people who de-
velop software use the poorest tools
to do the job. You can do better than
that. Learn how to automate your
environment—write macros if your
IDE supports it; grab your favorite
scripting language if it doesn’t (Ruby
is a good choice; see www.ruby-
lang.org). Get your computer to do
as much of the repetitive and mun-
dane work as you can. Then you can
move on to the really hard stuff. See
you next issue.

Andy Hunt and Dave Thomas are partners in The
Pragmatic Programmers, LLC. They feel that software consul-
tants who can't program shouldn't be consulting, so they keep
current by developing complex software systems for their
clients. They also offer training in modern development tech-
niques to programmers and their management. They are co-
authors of The Pragmatic Programmer and Programming Ruby,
both from Addison-Wesley, and speak on development practices
at conferences around the world. Contact them via www.
pragmaticprogrammer.com.

SOFTWARE CONSTRUCTION

MIT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
An Equal Opportunity/Affirmative Action Employer

Non-Smoking Environment
web.mit.edu/personnel/www

SOFTWARE ENGINEERING
FACULTY POSITION
The Aeronautics and Astronautics Department at MIT, a leader in the
design and development of complex aircraft, space, transportation,
information and communications systems, has a faculty opening in the
Aerospace Information Systems Division. The department seeks
candidates for a position in software engineering for aerospace
applications, available in September 2002.The successful candidate will
have a Ph.D. and relevant SW engineering research credentials in one or
more of these areas: requirements specification and analysis,
assurance techniques, human-machine interaction, software design for
embedded systems, safety, reliability and other quality attributes,
software fault tolerance, or real-time application issues like scheduling
and verification. A joint professorship with Computer Science is possible.

MIT encourages women and underrepresented minorities to apply. Send
two copies of cover letter (which includes a statement of interest) and of
your c.v. with the names and addresses of three individuals who will
provide letters of recommendation, by January 15, 2002, to: Professor
Edward F. Crawley, Head, MIT Department of Aeronautics and
Astronautics, 33-207, 77 Massachusetts Avenue, Cambridge, MA
02139-4307; or by electronic mail to: aa-fac@mit.edu (MS Word or
plain text). http://web.mit.edu/aeroastro/www/core/html

