
0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 8 9

software construction
E d i t o r s : D a v e T h o m a s a n d A n d y H u n t � T h e P r a g m a t i c P r o g r a m m e r s
d a v e @ p r a g m a t i c p r o g r a m m e r. c o m � a n d y @ p r a g m a t i c p r o g r a m m e r. c o m

T
he open source (OS) community can de-
liver high-quality, very popular soft-
ware—according to the May 2004 Net-
craft survey, the Apache Web server runs
roughly 67 percent of the world’s Web
sites (http://news.netcraft.com/archives/

web_server_survey.html). This software is devel-
oped in a culturally and geographically diverse
environment. The developers do it for little or no
money, with little or no extrinsic management.

And many developers do it even after working a
full day at their regular programming job. Why
do they do this? How? And is it possible to bring
some of these OS practices (and some of this en-
thusiasm) in-house, improving the way we de-
velop software in a corporate environment?

Before we go any further, we have to clear
up a few issues.

The first myth to dispel is that OS develop-
ment is a kind of communal (or communist, as
some suggest) hippy-freak love fest. Nothing is
further from the truth. In the OS world, you
are your reputation—all that matters is how
well you do. Developers work hard to win that

reputation by delivering high-quality code.
Once won, they work even harder to protect it:
submit poor code to an OS project, and the rest
of the team will let you know in no uncertain
terms—it’s their reputations on the line. As a
result, OS communities are meritocracies, and
each project is run by a (hopefully benevolent)
dictator. Compared to the OS model, it would
be easier to argue that most corporate develop-
ment has communist roots, with its strong be-
lief in central planning and the interchangeabil-
ity of production programming staff units.

The second myth, often held by OS develop-
ers themselves, is that OS always produces great
software. The reality is far different. Most OS
projects never get off the ground (of course,
there’s an argument that many commercial de-
velopments shouldn’t have gotten off the ground
either ...). Many die at inception, while others
survive, but with little momentum behind them.
Often, these failures to thrive can be traced back
to developers who don’t understand the OS
model. We’ll ignore these here: if we’re going to
learn from OS, let’s learn from the best. Let’s
look at the practices used by those who develop
great OS software.

The itch in the pearl
Like pearls, every OS project starts life as an

irritation, something that needs doing. (OS de-
velopers call it “scratching an itch.”) A devel-
oper has a need and starts developing software
to fill that need. (That’s why much OS software
is tools for developers.) In a successful project,
the developer will typically release a first version
of that code fairly early—typically before it’s

Open Source Ecosystems
Dave Thomas and Andy Hunt

9 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

SOFTWARE CONSTRUCTION

robust and fully featured. This release
serves multiple purposes. It tells the rest
of the world there’s a new project in
town, and it shows that world the direc-
tion the project is taking. Potential users
can kick the tires (while at the same time
realizing that pieces may fall off when
they do so), and potential collaborators
get to view the quality of the code so far
(an important consideration if they are
to tie their reputation to the project).

What does this tell us in terms of
corporate development? First, we have
to make sure that we have a need be-
fore we start developing. Sounds obvi-
ous, but many companies don’t. We re-
cently saw a client whose software had
something like 5,000 configuration op-
tions. They had seven clients. Clearly
some of the options didn’t have an un-
derlying real-world need.

Second, at the core of a project we
need someone who both understands the
need and can deliver an initial solution
that meets it. When developers write
tools for developers, this is easy. When
they’re writing banking systems, it’s
harder. The trick is to align developer
needs more directly with those of the
system’s users. Two techniques that
we’ve used are the buddy system and
work-withs.

In the buddy system, we pair a proj-
ect sponsor with a lead developer and
allow them time to form a trusting rela-
tionship. If the communication between
the two is efficient enough, they can act
jointly as a project’s core, with the spon-
sor generating the majority of the need
and the developer the bulk of the solu-
tion. (Note that we’re careful not to be
black-and-white about this: when the
relationship is correctly established,
each party will occasionally contribute
significantly in the other’s domain.)

Work-withs are an old consulting
trick. If you want to know what’s really
going on, do the job for a while. If you’re
writing a system to help customer sup-
port folks, work alongside them for a
week first. Learn what they do firsthand,
and get to know how the job really
works, not just how the procedure man-
uals say it should work. Obviously you
can’t always do the job, but you’ll usually

be able to at least sit alongside and learn.
Both the buddy system and work-

withs produce a project with a strongly
motivated and capable core. This leads
us to our third lesson from OS. That
core has to release something early. The
team has to get code out so that people
can see what they’re doing and where
they’re going. This code doesn’t have to
be perfect—in fact, being too polished is
an indicator that the team waited too
long before releasing. Nor does the code
get put into production; everyone
knows that it’s alpha-quality and not fit
for real use. But the release acts as a nu-
cleus for discussion and is the first sig-
nificant opportunity for the team to
gather feedback.

Emergent teams
In a corporate setting, we typically

form teams first on paper and then in
practice. We create diagrams containing
slots labeled things such as “architect,”
“designer,” and so on. Often our method-
ologies have ready-made diagrams that
we can copy. We then look for people to
fill the slots in these diagrams.

OS projects are different. They al-
most always start with a single person at
their center. If, after the first couple of re-
leases, they start to grow (and this isn’t
guaranteed), people might volunteer to
join. They don’t ask to be “architects”
or “designers.” Instead, they suggest
specific functional areas where they can
contribute: “I know something about
databases, so I could help with the per-

sistence layer.” The project owner then
gets to choose: accept the person uncon-
ditionally, accept the person provision-
ally, or perhaps even reject the person.
Typically, the applicant will be put on
probation, which means that the owner
will accept contributions in the form of
patches rather than live changes to the
code base. Once the owner gains confi-
dence in the new contributor (based on
the quality of the submitted work), the
new member will be given unrestricted
access to the code.

In a corporate setting, we’re unlikely
to have this kind of flexibility. However,
we can still learn some lessons in team
structures. Rather than forming teams
based on cookie-cutter hierarchies, we
need to look at the skills and enthusiasms
of the people we have. Divide your big
projects in smaller teams, where each
team has end-to-end responsibility for
some specific function. Then, allow those
teams to organize themselves internally.
The OS experience suggests that these
teams will exceed your expectations and
that the people on them will be both
more enthusiastic and more efficient.

Passionate people
Why do developers spend eight

hours a day writing software at their
day jobs, then come home and spend
even more time coding OS software?
Probably as many reasons exist as
there are OS developers (and there are
tens of thousands, if not hundreds of
thousands, of them). But most reasons
probably come down to a combination
of need, pride, ambition, or commu-
nity. We’ve talked about developers
scratching itches by writing software.
What are other motivators?

Pride is a strong driver. We speak to a
lot of developers, and many are frus-
trated by their day jobs. They don’t feel
proud of what they’re doing: constraints,
poor practices, and inability to deliver
real value to users rob them of something
to believe in. So they go home and create
better situations for themselves in OS.

Ambition is also an important dri-
ver. Companies often miss the boat
when rewarding developers, treating
them the same as other staff. But many

We have to make sure
that we have a need

before we start
developing. Sounds
obvious, but many
companies don’t.

J u l y / A u g u s t 2 0 0 4 I E E E S O F T W A R E 9 1

SOFTWARE CONSTRUCTION

surveys have shown that developers are
less motivated by salary and position
than they are by more challenging proj-
ects and better tools. Align corporate
reward programs with developers’ val-
ues. Companies also need to get better
at recognizing (both meanings of “rec-
ognize”) good jobs.

Many developers turn to OS to find
safe and interesting communities of
like-minded people. Companies such as
Google recognize and use this: have a

look at www.google.com/corporate/
culture.html to see how they build a
successful culture.

Open minds, open source
Over the years, the OS community

has evolved a successful set of practices
that lets them produce world-class soft-
ware under conditions that most proj-
ect managers would view as impossi-
ble. To date, the attention has focused
on the software these products pro-

duce. Perhaps it’s time to look as well
at the processes that made this soft-
ware possible.

Dave Thomas and Andy Hunt are partners in
The Pragmatic Programmers and authors of the Jolt Productivity
Award-winning The Pragmatic Starter Kit book series. Contact
them via www.PragmaticProgrammer.com.

This column is a summary of a half-day talk given to the rOOts
(recent Object Oriented trends) conference in Bergen, Norway,
29 April 2004; http://roots.dnd.no.

Asset: Informally, anything of value that the company owns
or is owed by others—for example, cash, accounts re-
ceivable, or equipment. More formally, the term often
refers to an item of value that is subject to depreciation
accounting.

Economic life: A kind of optimization analysis that opti-
mizes an asset’s costs of ownership on the basis of
the length of time the asset is kept. Also called mini-
mum cost life or economic replacement interval.

Benefit-cost analysis: In not-for-profit decision analysis, this
method bases the desirability of an alternative on the
ratio of the net benefits to the population (measurable
benefits minus measurable “dis-benefits”) divided by
net costs to the sponsor (measurable costs minus mea-
surable cost savings).

Optimization analysis: A form of decision analysis that
balances competing components to achieve the best
performance. Software’s classic space-time trade-off
is an example of optimization; an algorithm that runs
faster will typically use more memory. Optimization
balances the faster runtime’s value against the addi-
tional memory’s cost.

Cost-effectiveness analysis: A form of not-for-profit
analysis, derived from benefit-cost analysis, which
seeks to maximize effectiveness for a minimum cost.
Fixed-cost analysis seeks to maximize the effective-
ness that can be attained from a fixed, maximum in-
vestment. Fixed-effectiveness analysis seeks to mini-
mize the investment needed to attain a fixed, minimum

degree of effectiveness.
Sensitivity analysis: A technique that studies how changes

in the values of estimated parameters affect an alterna-
tive’s desirability. Parameters where small changes in es-
timated values cause larger changes in desirability are
said to be more sensitive. Sensitivity analysis guides the
decision maker in identifying the estimated parameters
that deserve more careful study to make sure those esti-
mates are accurate.

Cost avoidance: A form of revenue (positive cash flow)
that comes as a result not of increasing income but
rather of decreasing expenses.

Bond: A form of investment that behaves like an interest-
only loan. The investor buys the bond for some amount,
receives interest-only payments over time, and then re-
ceives the initial investment plus the final interest install-
ment at the end of the term. Bonds are a typical means
for government units to raise needed capital. Revenue
bonds are secured by future revenue generated from
the activity being funded, whereas general obligation
bonds are secured by the issuing entity’s ability to tax.

Capital gains: Passive increases in the value of a capital
asset. The term “passive” means that the change in
value is due not to the owner’s active involvement but to
other, external reasons. If a person buys a plot of land
and the value increases, say, because of development
in that area, the difference between the current value
and the original basis cost (what it cost the owner to
acquire the asset) is considered a capital gain.

G L O S S A R Y

SOFTWARE
ENGINEERING

S
te

v
e

 T
o

c
k

e
y

�
C

o
n

s
tr

u
x

 S
o

ft
w

a
r

e
 �

s
te

v
e

.t
o

c
k

e
y

@
c

o
n

s
tr

u
x

.c
o

m

Software Engineering Economics

