
2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

software construction
E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

A
guiding principle behind agile soft-
ware development is the idea of keep-
ing things simple. The Agile Manifesto
defines it this way: “Simplicity—the
art of maximizing the amount of work
not done—is essential.”

We want to actively increase the “amount of
work not done.” We do this by only implement-
ing essential features or framework functionality

and by taking steps (such as constant refactoring
and avoiding “broken windows”1) to avoid fu-
ture problems that might require extra work.

Making life simpler is an admirable goal,
but unfortunately many developers have a
knack for making one of two errors:

� Oversimplifying something that really is
complex

� Overcomplicating something that should be
easy

The first problem is usually readily noticeable
as long as a customer or sponsor is involved in
the project, as the corresponding lack of func-
tionality soon becomes apparent. Even if the

problem isn’t noticeable at the user level, you
might see warning signs in the code: the number
of “special cases” needed to handle a particular
piece of application functionality starts to grow
suddenly. You start to see code that just isn’t
tractable; pushing on it “here” causes another
problem to pop up over “there.” Developers
might begin to exhibit that sudden stricken look
(like a deer caught in the headlights of a rapidly
approaching car) as they proceed further into the
requirements, and so on. We’ll talk more about
this “Whack-a-Mole” style of development in a
later column; for now, onto the second problem.

Extreme programming attacks overembellish-
ment with the YAGNI (you aren’t gonna need it)
principle.2 This pithy maxim admonishes us to
build today only those features that we truly need
today. The notion that “we might need this” later
turns out to be false so often that’s it better to err
on the conservative side and never build anything
unless you absolutely, positively need it right now.

But is that notion true? Does it really work
that way?

Some have criticized XP on this issue, saying
that YAGNI limits intelligent foresight. Taken at
face value, it might seem that way, but as Kent Beck
has remarked, “YAGNI is not a license to be stu-
pid.” So perhaps we need to look at this issue more
pragmatically: how do we decide whether to build
something that isn’t strictly necessary today but
could be cheaper in the long run to build (or start)
now and could save us from larger pains later on?

Deciding what to pack
One way to look at this issue is to consider

how you would pack a suitcase or overnight bag
for a short trip. You wouldn’t want to head into

The Trip-Packing Dilemma
Andy Hunt and Dave Thomas

M a y / J u n e 2 0 0 3 I E E E S O F T W A R E 3

CONSTRUCTION

the jungle or other hostile area unpre-
pared, but then again you have to travel
light. The carrying cost of small items in a
bag (the extra weight and volume used) is
pretty much negligible until it exceeds
some threshold. All of sudden, the bag
seems too heavy to lift comfortably. Now
you’ve got some decisions to make: What
do you absolutely need? What might you
need? What’s the cost of taking it and of
not taking it?

Experienced backpackers might well
laugh at the novice who brings along the
proverbial kitchen sink. But at the same
time, omitting even something as small as
a first aid kit might prove fatal. As with
most decision-making processes, it’s an
exercise in risk management. Here’s
where it gets interesting: unlike the over-
night bag, repacking code is itself another
expense. And the costs of even a little bit
of extra weight are far more significant.
The carrying cost of something as minor
as an extra unused method in a class is
often much more than we realize. All
code—even unused code—must be writ-
ten, understood, documented to some de-
gree, tested, and maintained as the sys-
tem evolves. Systemic overbuilding can
quickly lead to the software equivalent of
a bag you can’t lift.

Overbuilding can also indicate
deeper misunderstandings. One fellow
on a previous client’s team (we’ll call
him Dick) took great care—and copious
amounts of code—to build a class to
handle an interval of time. He included
appropriate conversion operators to
convert this integer value to every imag-
inable basic data type: short, long, dou-
ble, float, maybe even a char (don’t ask).

None of this was ever used because
the business definition of the quantity
meant it had to be treated as a native in-
teger anyway. Worse yet, because of the
many interesting business rules that gov-
erned the handling of this quantity, it
should never have been exposed as a na-
tive type in the first place.

But Dick’s approach is a perfect ex-
ample of how YAGNI should apply: he
was taught the canonical dogma that an
abstract data type should provide oper-
ators for type conversion to all possible
native data types—just in case you

might need them. That sort of wasteful
practice leads to geometric code bloat
and correspondingly increased costs.

The other side of the coin is just as
dangerous, even though it doesn’t have a
catchy slogan associated with it yet. To-
ward that end, we humbly suggest the
new acronym DOGBITE: do it, or get
bitten in the end. Here’s how it works.

Dick’s coworker Jane read about XP
once and is a strong advocate of
YAGNI. Jane is working on support
code to save and restore the state of se-
rialized objects. For the moment, no re-
quirement exists to support transac-
tions, although that will be coming. It’s
hard to envision how that would work
for now, so Jane puts off thinking about
it. After all, it’s not needed right now.

Several months later, the time comes
when a user-visible feature now requires
transaction support. Unfortunately, be-
cause the earlier design did not allow for
transactions, what might have been a
simple matter of adding functionality be-
comes a large, messy endeavor that fi-
nally costs the team a complete rewrite of
this part of the code base. A small arith-
metic cost incurred earlier could have
spared us a larger geometric cost now.

Social aspects
Beyond the pure technical issues, you

can also have reasons to invest beyond
today’s requirements brought on by
“softer” considerations. Suppose that
prior to implementing a feature, you
know that the customer has changed her
mind—drastically—several times among
several possibilities. Does it sound pru-
dent to go ahead and code the feature ac-
cording to the last way the wind blew?
Or, might this be an occasion to invest in
a more flexible approach, using meta-
data, for instance? There’s no strict re-
quirement for metadata, but your intu-
ition tells you that this area is volatile and
could change yet again.

As with any investment, it’s a gam-
ble you could lose. The last decision
could remain the last decision, and
you’d lose the extra effort invested.
Then again, the added flexibility might
save you several days or even weeks of
rework down the line if you’re right.

But there’s a funny nonlinearity about
this decision. Looking back at the last sev-
eral projects we’ve dealt with, a consistent
trend seems to emerge. The portions of
systems that went beyond the require-
ments of the day—those that heavily used
metadata, configurable options, and the
like—enjoyed a longer and more robust
life than those that didn’t. In a recent case,
the only portion of a large system that
survived past the first year was the one we
built. It was driven by its own custom, do-
main-specific language, which was imple-
mented using yacc and lex. Inherently
flexible beyond the immediate require-
ments, it alone survived.

These techniques don’t suit every pro-
ject, of course. The only way to find out
whether they do or don’t is to use your
own judgment, regardless of any current
pithy maxims.

Limitations of pith
The pragmatic approach always

takes advantage of experience. Your ex-
perience, after all, is where your value
lies. It’s how you keep your job, or get
the next one. Taking a pithy maxim
such as YAGNI to extremes dehuman-
izes the development process and cuts
off your foresight born of experience.

Pithy maxims just remind us of
deeper issues; a world of gray matter ex-
ists behind every black-and-white rule.
That’s why there’s no substitute for ex-
perience, judgment, and common sense.
Without these, and despite the best
practices and latest methodologies, pro-
ject teams will fail.

D on’t shortchange yourself or your
team: listen to your intuition, learn
from your experience. That’s the

pragmatic thing to do.

References
1. A. Hunt and D. Thomas, The Pragmatic Pro-

grammer: From Journeyman to Master, Addi-
son-Wesley, 2000.

2. K. Beck, Extreme Programming Explained,
Addison-Wesley, 1999.

Andy Hunt and Dave Thomas are partners in The Pragmatic
Programmers. They feel that software consultants who can’t pro-
gram shouldn’t be consulting, so they keep current by develop-
ing complex software systems for their clients. Contact them via
www.pragmaticprogrammer.com.

