
0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 1 3

software construction
E d i t o r s : D a v e T h o m a s a n d A n d y H u n t � T h e P r a g m a t i c P r o g r a m m e r s
d a v e @ p r a g m a t i c p r o g r a m m e r. c o m � a n d y @ p r a g m a t i c p r o g r a m m e r. c o m

A
s this issue’s focus is requirements en-
gineering, we thought we might sur-
prise our editor this month and actu-
ally write an on-topic article. Given
that this is the Construction column,
though, are we going to be able to pull

it off? Stay tuned.
As a starting point, let’s pull a quote from the

previous issue of IEEE Software. In their col-
umn “Understanding Project Sociology by Mod-

eling Stakeholders” (Requirements, Jan./Feb.
2004), Ian Alexander and Suzanne Robertson
describe the reactions of developers who are
asked what they mean when they say “We have
a problem with our stakeholders.” One of the
responses was

The stakeholders ... don’t have the skills
necessary to participate in gathering re-
quirements. They describe solutions,
rather than requirements, and they change
their minds.

Users, focused on solutions? Shameful!

Users, changing their minds? Never!
It’s hard to sympathize with developers who

express this kind of frustration. In the real world,
stakeholders are interested in solutions, not some
abstract developer-centric set of requirements.
And users most definitely change their minds:
perhaps they got it wrong, or perhaps the world
just changed.

But the developers quoted by Alexander
and Robertson are not alone. A kind of mass
delusion seems to persist in the development
community. Many people think that there are
such things as requirements.

No Virginia,
there are no requirements

The fundamental problem here is that folks
believe that underlying every project there’s
some absolute, discoverable set of requirements.
If only we could find them, and then build ac-
curately against them, we’d produce a perfect
solution. The requirements would be a kind of
map, leading us from where we are to our pro-
ject’s final destination.

This is a wonderful dream, but it’s unlikely
to be true.

Part of the problem lies in defining what we
actually mean by requirements. The dictionary
doesn’t help much: requirements are the things
we need or wish for. As a community, we can
deal with the need part of this definition. These
are a project’s constraints. If I’m interfacing to
a payment gateway, I’m constrained to use that
gateway’s communications protocols and to
obey the transactional rules of the financial in-
stitutions with whom my code interacts. If I’m

Nurturing Requirements
Dave Thomas and Andy Hunt

1 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

SOFTWARE CONSTRUCTION

writing autopilot software for the next-
generation business jet, I have a consid-
erable list of constraints, imposed by
the laws of both nature and man.

The nice thing about constraints is
that I can test the eventual application
against them. I can generate traffic from
my application into a mocked-up pay-
ment gateway and check the messages’
format and content. I can generate both
valid and exceptional responses and ver-
ify that my application handles them as
specified by the protocol. I can do the
same with the autopilot software—first
in a simulator, and later in a real plane.
(There’s an apocryphal story of a UK de-
velopment team in the 1970s who wrote
software to help a particular helicopter
hover automatically. Part of the accep-
tance test was for the team to ride in the
helicopter while the pilot released the
controls and their software flew the
plane. Seems to us that this kind of test-
ing would focus the mind tremendously.)

But there’s the second side of require-
ments: the wishing side. This is where
users get to talk about solutions and
needs.

For a typical business application,
the wishing side is typically more promi-
nent than the constraint side. Users typ-
ically say, “I need a report showing the
sales breakdown by product.” Ask
them, “OK, so exactly what are your re-
quirements?” and they’ll look at you
funny and repeat, “I need a report
showing the sales breakdown by prod-
uct.” You can dig deeper and deeper,
and they may start giving you more in-
formation, but in reality that informa-
tion is typically of doubtful value: force
a business user into a corner, and they’ll
invent something on the spot just to
stop you annoying them. Are they being
capricious? Not at all. In their world
view, “I need a report…” is a perfectly
good requirement. They see no need to
give you a layout, or to define the colors
or fonts, or tell you what database ta-
bles to query. These are implementation
details, not fundamental requirements.

So, our users can’t always give us
what we want when we ask for firm re-
quirements. Often they don’t know the
details. And often the details change

along the way. What are we to do?

Constructing requirements
This series of columns is called Soft-

ware Construction. It’s a metaphor that
the software industry has embraced
when describing what we do. (Andy
and I actually have some serious mis-
givings about the term, but that’s the
subject of a later article.) So how do
other construction-oriented industries
deal with requirements? Think about
the process of building a custom house.

As the owner-to-be, you get to spec-
ify what you want: number of rooms,
number of stories, overall style, and so
on. These are the constraints side of
your requirements. When the house is
built, you’ll be able to test them (does
the property have the requisite number
of rooms and stories, for example). But
you have other hopes for the house as
well. You want it to have the right feel.
You want it to flow well. These intangi-
bles are hard to specify precisely. So
how does the architect deal with this?
They iterate. When you first start the
process, they sit down with you and
sketch out some ideas. The next time
you see them, these sketches may have
turned into a set of high-level plans,
along with an elevation or two to give
you a feel for the property. You may
spend a couple of meetings iterating
these drawings until things get close.
Then, if your budget extends that far,

you may even get to see a model of your
final house.

Next, the plans go to the builder, who
starts framing the property. At this stage,
you still have some control. As the boards
start to go up, and as you walk around
the site, you realize you don’t like a door-
way where it is, or that some dead space
under the stairs would make a great place
to store the kids’ toys. These changes
clearly cost you some time and money,
but they’re easier now than when the
house is complete. Because you, the user,
were involved throughout the process,
you were able to make many small ad-
justments to the house as it progressed
through conception, design, and con-
struction. Hopefully, the final product
will be closer to your dreams than it
would have been had you met once with
the architect while she captured your re-
quirements and then come back eight
months later to see the resulting property.

The same kind of continuous user in-
volvement and constant iteration works
with software projects too. Iterative de-
velopment is often seen as a way of con-
trolling costs and mitigating risks, but
it’s also a great way to capture and ver-
ify requirements.

Agile methodologies do this to great
effect. An agile project starts off in a cer-
tain direction and gives itself a set, short
amount of time to deliver some quanta
of business value. At the end of this iter-
ation, the team delivers something of
business value to the user. This delivery
serves many purposes: it helps verify that
the developers are delivering the right
thing, it potentially gives the users some-
thing they can start to use, and it acts as
a basis for discussion for future develop-
ment. Having looked at the iteration, the
users are in a much better position to un-
derstand what they’re getting. This un-
derstanding then leads to them refining
their requirements.

Powerful feedback takes place as
dreams are realized. Anyone can build
castles out of clouds, but once the mor-
tar hits the bricks, you soon start to re-
alize what’s important and what isn’t.
We see this effect all the time when de-
livering software incrementally. When
we start off, our users may think they

Anyone can build
castles out of clouds,

but once the
mortar hits the bricks,

you soon start to realize
what’s important
and what isn’t.

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 1 5

know what they want. But as we start
to shape their dreams into reality, and
as they start to experiment with the in-
terim deliverables, the users start to see
how what they asked for interacts with
the rest of the world. They may come to
realize that some things were just plain
wrong. Other things are acceptable, but
would be great if we changed them
somewhat. And features that they
thought were essential might start shap-
ing up to be pretty marginal when they
come to use them. We love this kind of
interaction and welcome the changes it
forces on our projects. Ongoing user in-
volvement means that the requirements
get better understood over time and
that the software we deliver ends up be-
ing more useful.

This is why we say that requirements
(as some absolute, static thing) just
don’t exist. The benefit of requirements
gathering is not the requirements them-
selves—those will likely change once
the project starts. Instead, the benefit is
the process we go through while gath-
ering them: the relationships we form
with our stakeholders and the under-
standing we start to develop about the
domain. Our July/Aug. 2003 column,
“Verbing the Noun,” discussed this.

Does that mean that all requirements
engineering tools and techniques are un-
necessary? Not at all. There are always
the constraint-based requirements to
track. In fact, in the rapidly changing
world of agile development, you could
argue that it’s even more important that
we track these constraints and verify that
the changes we make during each itera-
tion’s review don’t compromise the sys-
tem’s underlying integrity. We just need
to recognize that not all requirements are
available when we start a project and
that the softer requirements that we do
capture will likely change over time.

So, while you’re reading the rest of
this issue about requirements and
process, remember one thing. Require-
ments aren’t engineered; they’re nur-
tured.

Dave Thomas and Andy Hunt are partners in
The Pragmatic Programmers and authors of the new The Prag-
matic Starter Kit book series. Contact them via www.Pragmatic
Programmer.com.

VIRGINIA TECH, Department of Com-
puter Science, Bioinformatics Faculty
Positions. The Department of Computer
Science at Virginia Tech seeks applications
for several tenure-track positions in the
Department of Computer Science from
individuals desiring to make fundamental
contributions to both computer science and
the life sciences in bioinformatics, as broadly
defined. Special funding from the Com-
monwealth of Virginia provides competitive
salaries and startup funding for tenure-track
faculty positions at all ranks. CS faculty in
bioinformatics have access to the 2200-
processor Terascale Computing Facility
recently established by the university, as
well as other multiprocessor clusters within
the Department. Excellent opportunities for
collaborative research exist with researchers
in life science departments and at the Vir-
ginia Bioinformatics Institute, which is
located on campus. Applicants for a senior
position must have a significant track record
of grant funding. All applicants must have a
PhD in Computer Science or an allied area,
a demonstrated record of publications in
computer science or computational science,
and a commitment to addressing significant
life science problems. Ability to collaborate
with researchers within the Department and
in the life sciences is required. A demon-
strated record of accomplishments in bioin-
formatics is preferred. Additional informa-
tion is available at http://www.cs.vt.edu/
FacultySearch. Applicants should send a cur-
riculum vitae, a 1-2 page statement of
research goals in both computer science
and life science, and at least three letters of
reference, as separate PDF files, by email to
facultysearch@cs.vt.edu. Review of candi-
dates will begin January 5, 2004 and con-
tinue until the positions are filled. Virginia
Tech is an equal opportunity employer.

���

Programmer Analyst: Responsible for
design, analysis, development, mainte-
nance, and testing of logistics, inventory,
billing, and financial applications for clients
in retail, transportation, manufacturing, and
financial industries. Minimum requirements
are Bachelor of Science degree in Computer
Sciences or Engineering. Must be able to
demonstrate proficiency in using the fol-
lowing applications: COBOL/COBOL II, VS
COBOL 2, COBOL 74/85/370,JAVA2, VB6,
with DB2, IMS, CICS on MVS, JCL, TSO,
ISPF/PDF, VSAM, OS390, ES9000, SDF II,
DCLGEN, SPUFI, IDCAMS, SUPERC,
FILEAID, BOOL AND BABBAGE, OMEGA-
MON, SPUFI, DCLGEN, IDCAMS, BMC,
PANVALET, QUERYMAN, PRINCETON SOFT-
WARE TOOLS & IBM UTILITIES, EXPEDITOR,
ANVIL, REVOLVE. 80% Travel. Qualified
applicants may apply by sending applica-
tion letter and resume to Peak Performance,
500 Waterman Avenue #206, East Provi-
dence, RI 02914.

A software company- Pointer-i is
offering its product – ELENET. ELENET
is an advanced Simulator of the Power Dis-
tribution Network. It uses Unix/Linux-ORA-
CLE RDBMS design, modeling and tuning,
and is fully Internet enabled. Objective:
•Reduce overall loss of power delivery from
2 to 4 per cent. •Estimate the loss from wire
heating, unbalanced distribution, reactance
compensation, voltage and frequency devi-
ation. •Analyze the estimates comparing
actual and optimal statuses of the network.
Features: •Graphically portrays and recon-
figures the network to facilitate operation,
maintenance and planning (much easier to
use than AUTOCAD). •Supports versioning
of the network layouts to provide an engi-
neer with easy access to past and future
generations of the network layout. •Informs
the engineer about any operation time-
related event (switching, tagging, contin-
gencies, tapping, etc.) •Applies any
sequence of the network events to any net
generation selected; i.e. any past, present
or future network configuration may be sim-
ulated under any weather conditions. (This
is a unique feature of ELENET). •Expresses
overall loss as a function of network config-
uration and nodal loads in individual esti-
mates of the various loss factors. •Allows
graphical entry of x-y dependencies like
impact cost functions, typical customer load
profiles, weather changes, etc., which is eas-
ier and more operable than table entry.
•Resembles a multi-channel quasi-real-time
metering instrument in providing fast and
accurate load flow calculation. •Compares
the results of manually set configuration to
the optimal configuration to achieve the
least amount of overall loss. Methodology:
Power flow analysis is based on accurate
load flow admittance calculation for radial
feeders and Gauss-Seidel method for
meshed network. Fast heuristic approach of
feeder reconfiguration helps manage the
distribution network. Determining voltage
regulation settings based on sophisticated
research of customer usage patterns. We
can implement your network inventory on
our system, or build an automatic interface.
Please contact us at: 416) 721 7893, 416)
894 3651 ask for Sasha or Yuly. Via e-mail:
sashatca@yahoo.com.

Classified Advertising

SUBMISSION DETAILS: Rates are
$110.00 per column inch ($300 mini-
mum). Eight lines per column inch and
average five typeset words per line. Send
copy at least one month prior to publi-
cation date to: Marian Anderson, IEEE
Software, 10662 Los Vaqueros Circle, PO
Box 3014, Los Alamitos, CA 90720-1314;
(714) 821-8380; fax (714) 821-4010.
Email: manderson@computer.org.

Product

