
2 2 I E E E S O F T W A R E M a y / J u n e 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

O
ne thing that makes unit-testing code
so hard is the way the real world
keeps intruding. If all we had to do
was code up tests for methods that
sort arrays or generate Fibonacci se-
ries, life would be easy. But in the real

world we have to test code that uses data-
bases, communications devices, user inter-
faces, and external applications. We might

have to interface to devices that aren’t yet
available or simulate network errors that are
impossible to generate locally. This all con-
spires to stop our unit tests from being neat,
self-contained (and orthogonal) chunks of
code. Instead, if we’re not careful, we find
ourselves writing tests that end up initializ-
ing nearly every system component just to
give the tests enough context to run. Not
only is this time consuming, it also intro-
duces a ridiculous amount of coupling into
the testing process: someone changes an in-
terface or a database table, and suddenly the
setup code for your poor little unit test dies
mysteriously. Even the best-intentioned de-
velopers become discouraged after this hap-
pens a few times. Eventually, testing starts to

drop off, and we all know where that leads.
Fortunately there’s a testing pattern that

can help. Using mock objects, you can test
code in splendid isolation, simulating all
those messy real-world things that would
otherwise make automated testing impossi-
ble. And, as with many other testing prac-
tices, the discipline of using mock objects
can improve your code’s structure.

An example: Testing a servlet
Servlets are chunks of code that a Web

server manages. Requests to certain URLs
are forwarded to a servlet container (or man-
ager) such as Jakarta Tomcat (http://jakarta.
apache.org/tomcat), which in turn invokes
the servlet code. The servlet then builds a re-
sponse that it sends back to the requesting
browser. From the end user’s perspective, it’s
just like accessing any other page.

Figure 1 shows part of the source of a
trivial servlet that converts temperatures
from Fahrenheit to Celsius. Let’s quickly
step through its operation. When the servlet
container receives the request, it automati-
cally invokes the servlet method doGet(),
passing in two parameters, a request and a
response. (These are important for our test-
ing later). The request parameter contains
information about the request; the servlet’s
job is to fill in the response. The servlet’s
body gets the contents of the field “Fahren-
heit” from the request, converts it to Cel-
sius, and writes the results back to the user.
The writing is done via a PrintWriter object,
which a factory method in the response ob-
ject provides. If an error occurs converting
the number (perhaps the user typed “boo!”

software construction

Mock Objects
Dave Thomas and Andy Hunt

E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

Yet sit and see; Minding true things by what their mockeries be. —Shakespeare, Henry V

M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 2 3

SOFTWARE CONSTRUCTION

into the form’s temperature field), we
catch the exception and report the er-
ror in the response.

Having written this code (or be-
fore writing it, for those in the Ex-
treme Programming tribe), we’ll want
a unit test to verify it. This is where
things start looking difficult. This
snippet of code runs in a fairly com-
plex environment (a Web server and a
servlet container), and it requires a
user sitting at a browser to interact
with it. This is hardly the basis of a
good automated unit test.

But let’s look at our servlet code
again. Its interface is pretty simple: as
we mentioned before, it receives two
parameters, a request and a response.
The request object must be able to
provide a reasonable string when its
getParameter() method is called,
and the response object must support
setContentType() and getWriter().
It’s starting to look as if we might be
able to write some stubs: objects that
pretend to be real request and response
objects but that contain just enough
logic to let us run our code. In principle
this is easy: both HttpServletRequest
and HttpServletResponse are inter-
faces, so all we have to do is whip up a
couple of classes that implement the in-
terfaces and we’re set. Unfortunately,
when we look at the interface, we dis-
cover that we’ll need to implement
dozens of methods just to get the thing
to compile. Fortunately, other folks
have already done the work for us.

Mock objects
Tim Mackinnon, Steve Freeman,

and Philip Craig introduced the con-
cept of mock objects in their paper
“Endo-Testing: Unit Testing with
Mock Objects” (www.cs.ualberta.ca/
~hoover/cmput401/XP-Notes/xp-conf/
Papers/4_4_MacKinnon.pdf), which
they presented at XP2000. Their idea
is a natural extension of the ad hoc
stubbing that testers have been doing
all along. The difference is that they
describe a framework to make writ-
ing mock objects and incorporating
them into unit testing easier.

Their paper lists seven good rea-
sons to use a mock object (para-
phrased slightly here):

� The real object has nondeterminis-
tic behavior.

� The real object is difficult to set up.
� The real object has behavior that

is hard to trigger (for example, a
network error).

� The real object is slow.
� The real object has (or is) a user

interface.
� The test needs to ask the real ob-

ject about how it was used (for ex-
ample, a test might need to check
to see that a callback function was
actually called).

� The real object does not yet exist.

Mackinnon, Freeman, and Craig
also developed the code for a mock ob-
ject framework for Java programmers
(available at www.mockobjects.com).
Let’s use that code to test our servlet.

The good news is that in addition
to the underlying framework code, the
mockobjects package comes with a
number of mocked-up application-level
objects. You’ll find mock output objects
(OutputStream, PrintStream, and
PrintWriter), objects that mock the
java.sql library, and classes for fak-
ing out a servlet environment. In par-
ticular, the package provides mocked-
up versions of HttpServletRequest
and HttpServletResponse, which by
an incredible coincidence are the types
of the parameters of the method we
want to test.

We can use mock objects in two dis-
tinct ways. First, we can use them to
set up an environment in which our
test code runs: we can initialize values
in the objects that the method under
test uses. Figure 2 shows a typical set
of tests using the JUnit testing frame-
work, which is available at www.junit.
org. We use a MockHttpServletRe-
quest object to set up the context in
which to run the test. On line six of the
code, we set the parameter “Fahren-
heit” to the value “boo!” in the re-
quest object. This is equivalent to the
user entering “boo!” in the corre-
sponding form field; our mock object
eliminates the need for human input
when the test runs.

Mock objects can also verify that
actions were taken. On line seven of
Figure 2, we tell the response object
that we expect the method under test
to set the response’s content type to
text/html. Then, on lines 9 and 22,
after the method under test has run,
we tell the response object to verify
that this happened. Here, the mock
object eliminates the need for a hu-
man to check the result visually. This
example shows a pretty trivial verifi-
cation: in reality, mock objects can
verify that fairly complex sequences
of actions have been performed.

Mock objects can also record the
data that was given to them. In our
case, the response object receives the

Figure 1. A trivial servlet that converts temperatures from
Fahrenheit to Celsius.

1 public void doGet(HttpServletRequest req,
2 HttpServletResponse res)
3 throws ServletException, IOException
4 {
5 String str_f = req.getParameter(“Fahrenheit”);
6
7 res.setContentType(“text/html”);
8 PrintWriter out = res.getWriter();
9

10 try {
11 int temp_f = Integer.parseInt(str_f);
12 double temp_c = (temp_f – 32) * 5.0 / 9.0;
13 out.println(“Fahrenheit: “ + temp_f +

“, Celsius: “ + temp_c);
14 }
15 catch (NumberFormatException e) {
16 out.println(“Invalid temperature: “ + str_f);
17 }
18 }

2 4 I E E E S O F T W A R E M a y / J u n e 2 0 0 2

SOFTWARE CONSTRUCTION

text that our servlet wants to dis-
play on the browser. We can query
this value (lines 10 and 23) to
check that we’re returning the text
we were expecting.

Mock objects
It’s likely that we’ve all been using
mock objects for years without
knowing it. However, it’s also likely
that we’ve used them only on an ad

hoc basis, coding up stubs when we
needed them. However, we
personally have recently started
benefiting from adopting a more
systematic approach to creating
mock objects. Even things as simple
as consistent naming schemes have
helped make our tests more readable
and the mock objects themselves more
portable from project to project.

There are several mock object frame-
works to choose from. Three for Java
are at www.c2.com/cgi/wiki?MockOb-
ject, and a fine implementation for Ruby
is at www.b13media.com/dev/ruby/
mock.html. If the thought of writing
all the mock object classes you might
need is intimidating, look at Easy-
Mock (www.easymock.org), a con-
venient Java API for creating mock
objects dynamically. All these imple-
mentations are a starting point; you’ll
probably need to add new mock object
implementations to stub out real ob-
jects in your environment.

There are also alternatives to
mock objects in the servlet environ-
ment. In particular, the Jakarta Cac-
tus system (http://jakarta.apache.org/
cactus) is a heavier-weight frame-
work for testing server-side compo-
nents. Compared to the mock-objects
approach, Cactus runs your tests in
the actual target environment and
tends to produce less fine-grained
tests. Depending on your needs, this
might or might not be a good thing.

A funny thing happens when you
start using mock objects. As with
other low-level testing practices,

you might find that your code be-
comes not only better tested but also
better designed and easier to under-
stand (Nat Pryce discusses this in the
sidebar). Mock objects won’t solve
all your development problems, but
they are exceptionally sharp tools to
have in your toolbox.

Dave Thomas and Andy Hunt are partners in The
Pragmatic Programmers, LLC. They feel that software consultants
who can’t program shouldn’t be consulting, so they keep current
by developing complex software systems for their clients. They
also offer training in modern development techniques to program-
mers and their management. They are coauthors of The Pragmatic
Programmer and Programming Ruby, both from Addison-Wesley.
Contact them via www.pragmaticprogrammer.com.

Figure 2. Mock objects in action—a typical set of tests using the
JUnit testing framework.

1 public void test_bad_parameter() throws Exception {

2 TemperatureServlet s = new TemperatureServlet();

3 MockHttpServletRequest request =

new MockHttpServletRequest();

4 MockHttpServletResponse response =

new MockHttpServletResponse();

5

6 request.setupAddParameter(“Fahrenheit”, “boo!”);

7 response.setExpectedContentType(“text/html”);

8 s.doGet(request, response);

9 response.verify();

10 assertEquals(“Invalid temperature: boo!\r\n”,

11 response.getOutputStreamContents());

12 }

13

14 public void test_boil() throws Exception {

15 TemperatureServlet s = new TemperatureServlet();

16 MockHttpServletRequest request =

new MockHttpServletRequest();

17 MockHttpServletResponse response =

new MockHttpServletResponse();

18

19 request.setupAddParameter(“Fahrenheit”, “212”);

20 response.setExpectedContentType(“text/html”);

21 s.doGet(request, response);

22 response.verify();

23 assertEquals(“Fahrenheit: 212, Celsius: 100.0\r\n”,

24 response.getOutputStreamContents());

25 }

Practical Experience with Mock Objects
Nat Pryce

My experience is that using mock objects and a test-first methodology forces
you to think about design differently from traditional object-oriented design tech-
niques. First, you end up with many small, decoupled classes that are used
through composition, rather than inheritance. These classes implement interfaces
more than they inherit state and behavior. Second, you think about object inter-
faces in terms of the services that an object both provides and requires from its
environment, making an object’s requirements explicit. This is different from
traditional OO design methods that concentrate only on an object’s provided
services and try to hide an object’s requirements through encapsulation of pri-
vate-member variables. Third, you end up thinking more explicitly in terms of
interobject protocols. Those protocols are often defined using interface definitions
and tested using mock objects before a concrete implementation is produced.

Nat Pryce is the technical director at B13media Ltd. Contact him at nat.pryce@b13media.com; www.b13media.com.

