
0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 1 7

software construction
E d i t o r s : D a v e T h o m a s a n d A n d y H u n t � T h e P r a g m a t i c P r o g r a m m e r s
d a v e @ p r a g m a t i c p r o g r a m m e r. c o m � a n d y @ p r a g m a t i c p r o g r a m m e r. c o m

O
ne of the underlying philosophies of
the Unix command shell is the idea of
the pipeline: Take a set of small, spe-
cialized programs and let them inter-
act by feeding the output of one into
the input of the next. By stringing sim-

ple programs together in this way, rich behav-
ior can emerge.

For example, you might want to know

just how many files you have in a directory.
In the Unix shell, the ls command produces
a list of files, and the wc command counts
the words, lines, and characters in its input.
String the two together into a pipeline (using
the -l option to wc to tell it to report the
number of lines it has read) and you have
your answer:

dave% ls | wc -l

13

The grep command reports those lines in
its input that match a pattern. Feed the com-

mand the directory listing from ls and you
can find out the files that have a “u” or a “z”
in their name:

dave% ls | grep '[uz]'

automation

schedule

zero_tolerance

If you instead wanted to know how many
files have a “u” or “z” in their name, you
could add a wc command to the end of the
pipeline:

dave% ls | grep '[uz]' | wc -l

3

I got to thinking about pipelines when I
was working on the answers to a program-
ming exercise (see http://pragprog.com/prag-
dave/Practices/Kata/KataSix.rdoc). The chal-
lenge was to find all the sets of anagrams in a
list of words. After working through all the
obvious solutions in Ruby, Java, and C#, I de-
cided to recode a solution in straight C. It
turned out to be ugly: because C doesn’t di-
rectly support collections more sophisticated
than linear arrays and because it has no
garbage collection, my code spent a lot of time
handling low-level details. As a result, the code
was harder to write, and the result was a lot
harder to read.

Jon Bentley also has an implementation of
the anagram problem in his marvelous book
Programming Pearls (Addison-Wesley, 1999).

Pipelines
Dave Thomas and Andy Hunt

Pipelines can let you replace complex program logic with a chain of far simpler
discrete steps.

1 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

SOFTWARE CONSTRUCTION

His solution breaks the problem into
two parts, which he calls sign and
squish. In sign, he generates a signature
for each word in the original list. This
signature is simply all the letters in a
word, sorted; all words that are ana-
grams will share a common signature.
The program writes this signature,
along with the original word, to its
standard output. Given a word list
containing the words “ante,” “cart,”
and “neat,” the program would write

aent ante

acrt cart

aent neat

Bentley then feeds this output
through a standard system sort pro-
gram, resulting in

acrt cart

aent ante

aent neat

This has the effect of bringing all the
anagrams together. He then feeds this
list through squish to read the file and
collapse adjacent lines with the same
signature. The result is a grouping of
all the words that are anagrams.

You’d invoke this anagram finder
using a pipeline, where each step per-
forms a fairly simple piece of process-
ing on its input.

cat words.txt | sign |

sort | squish

The key thing here is that the com-
bined complexity of the two subpro-
grams, sign and squish, is considerably
less that that of a single program that
does the same job. By dividing up the
problem, we’ve made our lives a lot sim-
pler. We’ve also allowed ourselves some
potential reuse. The squish program, for
example, simply groups words based on
some signature. If we had a list of peo-
ple’s first and last names, we could also
use squish to also group folks who share
a first name. If we had a list of football
teams and players, we could use it to pro-
duce a list of players grouped by team.

Pipelines and filters
One thing pipelines can do is filter:

only a subset of data that enters the pro-
gram makes it through to the other side.
We saw that earlier with the grep ex-
ample; only filenames containing the let-
ters “u” and “z” passed through to the
word count program.

We can use the same kind of filtering
in real-world applications. Banks and
other financial institutions, for example,
have complex rules when it comes to
data security and access rights. A partic-
ular bank might say that

� Tellers may access account informa-
tion but not customer addresses.

� Personal bankers may access account
information and the addresses of cus-
tomers who are not also bank staff.

� Managers may access the account
information and addresses of all cus-
tomers except headquarters staff.

� And so on ….

We can design a system that imple-
ments these rules by encoding them
into the various business objects that
represent customers, accounts, and
staff. This works but can lead to some
convoluted logic; it can also spread
that logic over many parts of the sys-
tem, turning development and mainte-
nance into an unpleasant game of bug
whack-a-mole.

Alternatively, you might use a
pipeline where security is implemented
by injecting a filter process between the
program that generates the list of ac-
counts and the program that uses that
list (see Figure 1). Inserting different
filters would implement different secu-
rity policies.

If we split security into its own fil-
ter, we immediately gain some advan-
tages. First, we’ve encapsulated the se-
curity rule into its own self-contained
module or program; when we need to
change the rules, we know where to
look. We’ve also simplified the code
that works with secured entities; this
code no longer needs the various
hooks and conditional logic to deal
with security issues. We’ve also poten-
tially achieved a degree of reuse; if
other parts of the system need this
form of security, they can reuse our se-
curity filter program.

Pipelines and decorators
The programs in pipelines can also

decorate the data that passes through
them. The sign program, for example,
adds a signature to every word it re-
ceives as input.

In the commercial world, we’re al-
ways decorating data with additional
derived information. We might take a
set of values and add subtotals and to-
tals, turning it into a report. Or we
might take the same data and perform
some statistics on the values for risk
analysis purposes. If the data repre-
sented an order, we might add shipping
charges, sales tax, or some cross-sell

One thing pipelines
can do is filter:

only a subset of data
that enters the program

makes it through
to the other side.

Teller
security or or

Manager
security

Personal
banker
security

Data
source

Data
user

Security
policy

Figure 1. Pluggable security using
pipelines.

SOFTWARE CONSTRUCTION

message that will appear on the invoice. We can achieve all
these things using conventional design and coding, but they
might be better implemented in pipelines. Given a standard
data source, we can construct a multistage pipeline that in-
cludes our shipping calculator, our sales tax calculator, the
totaling program, and the cross-sell program before feeding
the resulting data into our invoice generator.

Again, this approach gives us many advantages: it’s easier to
write and test the individual functions as free-standing pipeline
programs, and the resulting code could well be reusable in
other contexts.

Implementing pipelines
In the Unix world, a pipeline is a command-shell con-

struct, joining together a set of freestanding executable
programs. And in some circumstances, we can implement
pipelines in our applications the same way, particularly if
the applications are batch-oriented.

However, it would be a pain to architect the average Web
application as a set of separate executables run by a com-
mand shell. Fortunately, we don’t have to in order to take ad-
vantage of a pipelined architecture.

One possibility is to write our programs using a separate
thread for each step in the pipeline and have the threads com-
municate via queues; each stage in the pipeline would write its re-
sults to a queue that the next step reads. This kind of architecture
takes a little up-front glue code, but it’s simple and effective.

You can get more sophisticated and use a messaging sys-
tem to connect each stage in the pipeline. Here an off-the-
shelf middleware layer lets the pipeline’s various components
communicate by sending messages. For simple applications
this is probably overkill, but it does offer scalability; if you
find that sales tax calculation is using up too many resources,
you could transparently move it onto another machine.

Interestingly, the current lemming-esque swarm to Web
services-based architectures makes pipelining easy. We can
write a central coordinating application that takes output
from one Web service and feeds it as input to another. It then
gets the output from that second service and feeds it to a
third, and so on until the problem is solved.

The trick to making all this work is choosing a good repre-
sentation for the data passed along the pipe. For the compo-
nents to be reusable, the pipeline must pass the data in a generic
and easy-to-use format. In the Unix world, this is a stream of
bytes. In our brave new Web world, it might well be XML.

P ipelines are a wonderful opportunity for both simplifica-
tion and reuse. Is there plumbing just waiting to be dis-
covered in your current application?

Dave Thomas and Andy Hunt are partners in The Pragmatic Programmers. They feel that
software consultants who can’t program shouldn’t be consulting, so they keep current by developing
complex software systems for their clients. Contact them via www.pragmaticprogrammer.com.

for information
technology
degrees.
The only thing more valuable
than having information is
knowing how to use it.
Pace University’s School
of Computer Science and
Information Systems
offers an outstanding faculty
dedicated to teaching
graduate students a unique
blend of theory and real-world
application. No wonder a
recent Crain’s New York Business
survey listed CSIS as one of the
top five sources for technology
degrees in the New York City
metropolitan area.

A wide range of financial aid
options are available:
• Graduate assistantships
• Coop Internships
• Scholarships
• Student Loans

One of the
top five

Learn more.

A New York Success Story

For more information,
www.pace.edu
or call
1-800-874-PACE ext. 5122

New York City
Pleasantville/Briarcliff
White Plains • Hudson Valley

