
The Art in Computer Programming

Andrew Hunt
David Thomas

The Pragmatic Programmers, LLC

September, 2001

The following is an adaptation of material originally presented in Åarhus, Den-

mark, at the Java and Object Oriented Conference, on September 12, 2001.

What exactly is software development, and why is it so
hard? This is a question that continues to engage our
thoughts. Is software development an engineering disci-
pline? Is it art? Is it more like a craft?

We think that it is all of these things, and none of them.
Software is a uniquely human endeavor, because despite
all of the technological trimmings, we’re manipulating lit-
tle more than the thoughts in our heads. That’s pretty
ephemeral stuff. Fred Brooks put it rather eloquently
some 30 odd years ago[Bro95]:

“The programmer, like the poet, works only
slightly removed from pure thought-stuff. He
builds his castles in the air, from air, creating
by exertion of the imagination. Few media of
creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand
conceptual structures. (As we shall see later,
this very tractability has its own problems.)”

In a way, we programmers are quite lucky. We get the
opportunity to create entire worlds out of nothing but thin
air. Our very own worlds, complete with our own laws of
physics. We may get those laws wrong of course, but it’s
still fun.

This wonderful ability comes at a price, however. We con-
tinually face the most frightening sight known to a cre-
ative person: the blank page.

1 Writer’s Block

Writers face the blank page, painters face the empty can-
vas, and programmers face the empty editor buffer. Per-
haps it’s not literally empty—an IDE may want us to
specify a few things first. Here we haven’t even started
the project yet, and already we’re forced to answer many
questions: what will this thing be named, what directory
will it be in, what type of module is it, how should it be
compiled, and so on.

The completely empty editor buffer is even worse. Here
we have an infinite number of choices of text with which
to fill it.

So it seems we share some of the same problems with
artists and writers:

1. How to start

2. When to stop

3. Satisfying the person who commissioned the work

Writers have a name for difficulties in starting a piece:
they call it Writer’s Block.

Sometimes writer’s block is borne of fear: Fear of going
in the wrong direction, of getting too far down the wrong
path. Sometimes it’s just a little voice in your head saying
“don’t start yet”. Perhaps your subconscious is trying to
tell you that you’re missing something important that you
need before you can start.

How do other creative artists break this sort of logjam?
Painters sketch; writers write a stream of conscious-
ness. (Writers may also do lots of drugs and get drunk,

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 1

www.pragmaticprogrammer.com

but we’re not necessarily advocating that particular ap-
proach.) What then, is the programming equivalent of
sketching?

SOFTWARE SKETCHES

Sometimes you need to practice ideas, just to see if some-
thing works. You’ll sketch it out roughly. If you’re not
happy with it, you’ll do it again. And again. After all, it
takes almost no time to do, and you can crumple it up and
throw it away at the end.

For instance, there’s a pencil sketch by Leonardo da Vinci
that he used a study for the Trivulzio equestrian monu-
ment. The single fragment of paper contains several quick
sketches of different views of the monument: a profile of
the horse and rider by themselves, several views of the
base with the figures, and so on. Even though the fin-
ished piece was to be cast in bronze, da Vinci’s sketches
were simply done in pencil, on a nearly-scrap piece of
paper. These scribblings were so unimportant that they
didn’t even deserve a separate piece of paper! But they
served their purpose nonetheless.1

Pencil sketches make fine prototypes for a sculpture or
an oil painting. Post-It notes are fine prototypes for GUI
layouts. Scripting languages can be used to try out al-
gorithms before they’re recoded in something more de-
manding and lower level. This is what we’ve traditionally
called prototyping: a quick, disposable exercise that con-
centrates on a particular aspect of the project.

In software development, we can prototype to get the de-
tails in a number of different areas:

1. a new algorithm, or combination of algorithms

2. a portion of an object model

3. interactions and data flow between components

4. any high-risk detail that needs exploration

A slightly different approach to sketching can be seen in
da Vinci’s Study for the Composition of the Last Supper.
In this sketch, you can see the beginnings of the place-
ment of figures for that famous painting. The attention is

1Sadly, the project’s sponsor canceled the monument due to lack of
funds. Some things never change.

not placed on any detail—the figures are crude and unfin-
ished. Instead, da Vinci paid attention to focus, balance
and flow. How do you arrange the figures, position the
hands and arms in order to get the balance and flow of the
entire piece to work out?

Sometimes you need to prototype various components
of the whole to make sure that they work well together.
Again, concentrate of the important aspects and discard
unimportant details. Make it easy for yourself. Concen-
trate on learning, not doing.

As we say in The Pragmatic Programmer[HT00], you
must firmly have in your head what you are doing before
you do it. It’s not at all important to get it right the first
time. It’s vitally important to get it right the last time.

PAINT OVER IT

Sometimes the artist will sketch out a more finished look-
ing piece, such as Rembrandt’s sketch for Abraham’s Sac-
rifice Of Isaac in 1635. It’s a crude sketch that has all of
the important elements of the final painting, all in roughly
the right areas. It proved the composition, the balance of
light and shadow, and so on. The sketch is accurate, but
not precise. There are no fine details.

Media willing, you can start with such a sketch, where
changes are quick and easy to make, and then paint right
over top of it with the more permanent, less-forgiving me-
dia to form the final product.

To simulate that “paint over a sketch” technique in soft-
ware, we use a Tracer Bullet development. If you haven’t
read The Pragmatic Programmer yet, here’s a quick ex-
planation of why we call it a Tracer Bullet.

There are two ways to fire a big artillery gun. The first
way is to carefully measure the distance to the target,
compensate for wind speed and direction, the weight of
the ordinance, and so on, crunch all the numbers and give
the orders to fire:

“Range 1000!”
whirr. click.
“Elevation 7.42!”
whirr. click.
“Azimuth 3.44”
whirr. click.

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 2

www.pragmaticprogrammer.com

“FIRE!”
BOOM. Oh bad luck, there. Missed.
“Range 2015!”
whirr. click.
“Elevation 9.15!”
etc. . .

By the time you’ve set up, checked and rechecked the
numbers, and issued the orders to the grunts manning the
machine, the target has long since moved.

In software, this kind of approach can seen in any method
that emphasizes planning and documenting over produc-
ing working software. Requirements are generally final-
ized before design begins. Design and architecture, de-
tailed in exquisite UML diagrams, is firmly established
before any code is written (presumably that would make
coders analogous to the “grunts” who actually fire the
weapon, oblivious to the target).

Don’t misunderstand: if you’re firing a really huge missile
at a known, stable target (like a city), this works out just
great and is the preferable way to go. If you’re shooting
at something more maneuverable than a city, though, you
need something that provides a bit more real-time feed-
back.

Tracer bullets.

With tracer bullets, you simply fill the magazine with
phosphorus-tipped bullets spaced every so often. Now
you’ve got streaks of light showing you the path to the
target right next to the live ammunition.

For our software equivalent, we need a skeletally thin sys-
tem that does next to nothing, but does it from end to
end, encompassing areas such as the database, any mid-
dleware, the application logic or business rules, and so on.
Because it is so thin, we can easily shift position as we we
try to track the target. By watching the tracer fire, we
don’t have to calculate the effect of the wind, or precisely
know the location of the target or the weight of the am-
munition. We watch the dynamics of the entire system in
motion, and adjust our aim to hit the target under actual
conditions.

As with the paintings, the important thing isn’t the details,
but the relationships, the responsibilities, the balance, and
the flow. With a proven base—however thin it may be—

you can proceed in greater confidence towards the final
product.

GROUP WRITER’S BLOCK

Up till now, we’ve talked about writer’s block as it ap-
plies to you as an individual. What do you do when the
entire team has a collective case of writer’s block? Teams
that are just starting out can quickly become paralyzed in
the initial confusion over roles, design goals, and require-
ments.

One effective way to get the ball rolling is to start the
project off with a group-wide, tactile design session.
Gather all of the developers in a room2 and provide sets
of Lego blocks, plenty of Post-It notes, whiteboards and
markers. Using these, proceed to talk about the system
you’ll be building and how you think you might want to
build it.

Keep the atmosphere loose and flexible; this gets the team
comfortable with the idea of change. Because this is low-
inertia design, anyone can contribute. It’s well within any
participant’s skills to walk up to the whiteboard and move
a PostIt-note, or to grab a few Lego blocks and rearrange
them. That’s not necessarily true of a CASE tool or draw-
ing software: those tools do not lend themselves readily
to rapid-feedback, group interaction.

Jim Highsmith offers us a most excellent piece of advice:
The best way to get a project done faster is to start sooner.
Blast through that writer’s block, and just start.

JUST START

Whether you’re using prototypes or tracer bullets, indi-
vidually or with a group, you’re working—not panick-
ing. You’re getting to know the subject, the medium, and
the relationship between the two. You’re warmed up, and
have started filling that blank canvas.

But we have one additional problem that the painters do
not have. We face not one blank canvas per project, but
hundreds. Thousands, maybe. One for every new module,
every new class, every new source file. What can we do

2If you’ve got more developers on the team than will fit in an ordinary
room, then you’ve got bigger problems than we can address here.

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 3

www.pragmaticprogrammer.com

to tackle that multiplicity of blank of canvases? The Ex-
treme Programming[Bec00] notion of Test First Design
can help.

The first test you are supposed to write—before you even
write the code—is a painfully simple, nearly trivial one.
It seems to do almost nothing. Maybe it only instantiates
the new class, or simply calls the one routine you haven’t
written yet. It sounds so simple, and so stupid, that you
might be tempted not to do it.

The advantage to starting with such a trivial test is that it
helps fill in the blank canvas without facing the distrac-
tion of trying to write production code. By just writing
this very simple test, you have to get a certain level of in-
frastructure in place and answer the dozen or so typical
startup questions: What do I call it? Where do I put it in
the development tree? You have to add it to version con-
trol, and possibly to the build and/or release procedures.
Suddenly, a very simple test doesn’t look so simple any
more. So ignore the exquisite logic of the routine you are
about to write, and get the one-line test to compile and
work first. Once that test passes, you can now proceed
to fill in the canvas—it’s not blank anymore. You’re not
writing anything from scratch, you’re just adding a few
routines. . . .

2 When to Stop

We share another problem with painters: knowing when
to stop. You don’t want to stop prematurely; the project
won’t yet be finished.3 But if you don’t stop in time, and
keep adding to it unnecessarily, the painting becomes lost
in the paint and is ruined.

There’s only one way avoid either trap: feedback. Before
you even start a particular task, you have to have a way to
determine that you’re done. For example:

3In software as well as in modern art, the distinction between inten-
tional and accidental omissions is often difficult to make.

A. . . is done when. . .
Project Customer accepts
Development Passes functional tests
Module Passes unit tests
Bug fix Test that previously failed now passes
Meeting objective for meeting achieved
Document Deliver exactly what’s needed
Talk Done when audience throws rotten fruit
Paper You are still reading this, right?

We had a client once who seemed to have some difficulty
in the definition of “done” with regard to code. After
toiling for weeks and weeks on a moderately complex
piece of software, Matthew (not his real name) proudly
announced the Code Was Done. He went on to explain
that it didn’t always produce the correct output. Oh, and
every now and again, the code would crash for no appar-
ent reason. But it’s done. Unfortunately, wishful thinking
alone doesn’t help us get working software out to users.

It’s easy to err on the other side of the fence too—have
you ever seen a developer make a career of one little mod-
ule? Have you ever done that? It can happen for any num-
ber of political reasons (“I’m still working on XYZ, so
you can’t reassign me yet”), or maybe we just fall in love
with some particularly elegant bit of code. But instead of
making the code better and better, we actually run a huge
risk of ruining it completely. Every line of code not writ-
ten is correct—or at least, guaranteed not to fail. Every
line of code we write, well, there are no guarantees. Each
extra line carries some risk of failure, carries an additional
cost to maintain, document, and teach a newcomer. When
you multiply it out, any bit of code that isn’t absolutely
necessary incurs a shockingly large cost. Maybe enough
to kill the project.

How then, can we tell when it’s time to stop?

PAINTING MURALS

Knowing when to stop is especially hard when you can’t
see the whole thing that you’re working on. Mural paint-
ing, for instance, takes a special eye. In corporate soft-
ware development, you may only ever see the one little
piece of detail that you’re working on. If you watch mu-
ral painters up close, it’s quite difficult to discern that the
splash of paint they’re working on is someone’s hand, or

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 4

www.pragmaticprogrammer.com

eyeball. If you can’t see the big picture, you won’t be able
to see how you fit in.

The opposite problem is even worse—suppose you’re the
lone developer on a project of this size. Most muralists
are simply painting walls, but anyone who’s ever painted
their house can tell you that ceilings are a lot harder
than walls, especially when the ceiling in question cov-
ers 5,000 square feet and you have to lie on your back 20
meters above the floor to paint it. So what did Michelan-
gelo do when planning to paint the Sistine Chapel? The
same thing you should do when faced with a big task.

Michelangelo divided his mural into panels: separate,
free-standing areas, each of which tells a story. But he
did so fairly carefully, such that the panels exhibit these
characteristics:

� High cohesion

� Low coupling

� Conceptual integrity

These are things we can learn from.

COHESION

What is cohesion? As used here, cohesion refers to the
panel’s focus and clarity of purpose. In the Sistine Chapel
ceiling, each panel tells a single Old Testament story—
completely, but without any extraneous elements.

In software, the Unix command line tool’s philosophy of
small, sharp tools (“do one thing and do it well”) is one
example. Each tool is narrowly focused on it’s primary
task. Low cohesion occurs when you have giant “man-
ager” classes that try to do too many disparate things at
once.

COUPLING

Coupling is related to orthogonality[HT00]: unrelated
things should remain, well, unrelated. Following the
object-oriented principle of encapsulation helps to pre-
vent unintended coupling, but there are still other ways
to fall into the coupling trap. Michelangelo’s panels have
low coupling; they are all self-contained; there are no in-
stances of figures reaching from one panel into the next,

for instance. Why is that important?

If you look closely at one of the panels that portrays an-
gels gliding about the firmament of heaven, you’ll notice
that one of the angels is turning his back to, and glid-
ing away from, the other angels. You’ll also notice that
said angel isn’t wearing any pants. He’s rather pointedly
“mooning” the other angels.

There is surely a tale that explains the bare tail of the
mooning angel, but for now let’s assume that the Pope
discovered the mooning angel and demanded that it be
replaced. If the panels weren’t independent, then the re-
placement of one panel would entail replacing some adja-
cent panels as well—and if you had to use different pig-
ments because the originals weren’t available, maybe you
have to replace the next set of panels that were indirectly
affected. Let the nightmare begin. But as it stands, the
panels are independent, so the offending angel (who was
apparently on Spring Break) could have been easily re-
placed with a less caustic image and the rest of the project
would remain unaffected.

CONCEPTUAL INTEGRITY

But despite that independence, there is conceptual
integrity—the style, the themes, the mood, tie it all to-
gether. In computer languages, Smalltalk has conceptual
integrity, so does Ruby, so does C. C++ doesn’t: it tries
to be too many things at once, so you get an awkward
marriage of concepts that don’t really fit together well.

The trick then is to divide up your work while maintaining
a holistic integrity; each Sistine Chapel panel is a separate
piece of art, complete unto itself, but together they tell a
coherent story.

For our projects, we have several techniques we need to
use inside code, including modularity, decoupling, and
orthogonality. At the project level, consider architect-
ing the project as a collection of many small applica-
tions that work together. These interacting applications
might simply use a network connection or even flat files,
or a heavier-duty component technology such as Enter-
prise Java Beans (EJB).

TIME

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 5

www.pragmaticprogrammer.com

Up until now, we’ve concentrated on splitting up a project
in space, but there is another very import dimension that
we need to touch on briefly—time. In the time dimension,
you need to use iterations to split up a project.

Generally speaking, you don’t want to go more than a few
weeks without a genuine deliverable. Longer than that
introduces too large of a feedback gap—you can’t get the
feedback quickly enough in to act on it. Iterations need to
be short and regular in order to provide the most beneficial
feedback.

The other important thing about iterations is that there is
no such thing as 80% done. You can’t get 80% pregnant—
it’s a boolean condition. We want to get to the position
where we only ship what really works, and have the team
agree on the meaning of words like “done”. If a feature
isn’t done, save it for the next iteration. As the iterations
are short, that’s not too far off.

In time or space, feedback is critical. For individual pieces
of code, it is vital to have competent unit tests that will
provide that feedback. Beware of excuses such as “oh,
that code’s too complicated to test.” If it’s too compli-
cated to test, then it logically follows that the code is too
complicated to write! If the code seems to be too compli-
cated to test, that’s a warning sign that you have a poor
design. Refactor the code in order to make it easy to
test, and you’ll not only improve the feedback loop (and
the future extensibility and maintainability of the system),
you’ll improve the design of the system itself.

3 Satisfying the Sponsor

Now comes the hard part. So far, we’ve talked about prob-
lems that have simple, straightforward answers. Organize
your system this way; always have good unit tests; look
for and apply feedback to improve the code and the pro-
cess; etc. But now we’re headed into much more uncer-
tain terrain—dealing with people. In particular, dealing
with the sponsor: the person or persons who are paying
to make this project happen. They have goals and expec-
tations all their own, and probably do not understand the
technology with which we create the work. They may not
know exactly what they want, but they want the project to

come out perfect in the end.

This must be the artist’s worst nightmare. The person pay-
ing for the portrait is also sitting for it, and says simply
“Make me Look Good”. The fact that the sitter is roy-
alty who commands a well-oiled guillotine doesn’t help.
Sounds pretty close to the position we find ourselves in as
we write software, doesn’t it?

Let’s look at it from the sitter’s point of view. You com-
mission an artist to paint you. What do you get? Per-
haps a traditional, if somewhat flat looking portrait such
as da Vinci’s Portrait of Ginevra Benci in 1474. Or maybe
the realistic, haunting face of Vermeer’s Girl With a Pearl
Earring. How about the primitive (and topless) look of
Matisse’s Seated Figure, the wild and fractured Portrait
of Picasso by Juan Gris, or the stick-figured jumble of
Paul Klee’s Captive?

All of these are portraits, all interpretations of a common-
place thing—a human face. All of which correctly imple-
ment the requirements, but all of which will not satisfy
the client.

BEYOND THE OBVIOUS

Each of these paintings captures the essence of a person,
not just the form. More than simple photographs, each
painting looks below the surface to capture something that
the camera can’t. As programmers, we must do the same
thing, only we tend to call it abstraction.

The phrase “requirements gathering” implies that require-
ments are simply lying about, ready to be scooped up and
worked on. That’s akin to a simple photograph, in that
it only examines the obvious, surface level elements. In
order to emulate the painter, we need to go beyond what’s
asked for. We need to ask the wicked questions to help
the client discover what’s really needed.

Systems Thinking[Sen90] suggests asking a minimum of
five “whys” beyond the first one. The classic example in-
volves a factory floor where the consultant notices a small
puddle of oil on the floor. He asks the shop manager about
it, who grumbles and barks an order to the cleaning crew
to get over here and clean up the oil. But the consultant
persists: why is the oil there? The manager says it’s the
cleaning crew’s fault. But where did the oil come from?

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 6

www.pragmaticprogrammer.com

A little investigating and more than five “why” questions
later, it turns out that an overly cost-conscious purchasing
agent got a deal on cases of O-ring seals for the overhead
pipes. Problem was, the rings were the wrong size—that’s
why they were such a deal. What seemed like a cost-
savings was in fact costing quite a bit of money in various
ways.

We once were approached to develop a complex,
enterprise-level data processing system that mail room
staff would use to coordinate, sort, and track incoming
payment checks prior to their distribution to the correct
department. The company’s current manual procedure
was error-prone and unreliable; checks were being lost
or mis-routed to the destination department.

What’s the real requirement here? A fancy system to sort
and catalog mail for the sole purpose of delivering it to
the right address? Hmm. Seems like there’s already a
system in place that handles that sort of thing. So instead
of a nice, fat, year-long contract, we told the company to
use a different postal address for each department. Let the
Post Office do the sorting, hopefully without opening the
pieces and losing the checks.

Requirements are rarely simple, and shouldn’t be taken
at face value. Remember, a portrait is more than just a
picture.

CONVENTIONAL WISDOM

Even stories about requirements may need deeper exami-
nation.

There’s a marvelous story of technology and consultants
gone wild, developing the Fisher Space Pen. The story
goes that the U.S. Government spent millions of dollars
of taxpayer’s money developing a space pen—a pen that
the astronauts could take to the moon that would operate
in the harsh conditions of weightlessness, extreme heat
and cold. Technology rushes to the rescue, and develops a
miracle pen that can write upside down in a boiling toilet.

The Russians, by comparison, decided to use a pencil.

A marvelous tale of an inappropriate solution, except for
one small problem. It’s not true. Both the Russian and the
U.S. astronauts used pencils at first, but there was a dan-
ger of the leads breaking and shorting out electric compo-

nents, and the wood of the pencil itself was combustible
as well. In a pure oxygen atmosphere, that’s a really bad
thing. The Fisher corporation realized this and, at its own
cost, designed the Fisher Space Pen, which it then sold
to NASA at reasonable cost. After the disastrous Apollo
One fire, NASA made the Fisher pens mandatory.

Fisher listened to the real requirement, even before the
client knew it. In time, NASA came to realize that they
were right. It was an appropriate use of high-technology
to solve a very real problem.

TECHNOLOGY FOR IT’S OWN SAKE

Of course, there’s always the inappropriate solution: en-
gineering for it’s own sake. As luck would have it, we
happen to have an anecdote for this case as well.

There was this company that had developed a sophisti-
cated video camera that could pan and tilt, looking for a
subject in its field of view. A wonderful, high-tech solu-
tion in search of a problem. In time, the company sold this
technology to a government agency to help take pictures
for driving licenses. You’d go into the licensing agency
and have a seat in front of the machine, which would whir
and click, grind and gyrate until it had locked onto your
face. The flash would fire, and in a few minutes your com-
pleted driver’s license would be ready.

One day, 58 year-old Fred complained that the pretty 20
year-old blonde girl on his license just didn’t look much
like him.

The company and the government agency kinda scratched
their heads; they weren’t sure what the problem was.
Problems like Fred’s were popping up over, but other then
getting a bunch in a row, there didn’t seem to be any pat-
tern to it. Finally, the police started to complain—and got
quite upset—when they started seeing driver’s licenses
that featured beaming, cartoon smiley faces instead of a
photo.

They discovered that the technology had gone awry: in
some cases, the camera wouldn’t get a lock, and would
simply continue to grind and whir, looking all over the
room for the subject. After a few minutes of watching the
camera carefully inspect the ceiling and windows, folks
like Fred would get bored and wander off. The next driver

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 7

www.pragmaticprogrammer.com

comes in, and with a flourish of clicks and whirs, the cam-
era would snap their picture—and associate it with the
previous driver’s license.

Now the office staff figured out pretty quickly what the
problem was, but they had no feedback path to the devel-
opers. They knew that once the machine got out of sync,
they’d get bad licenses all day. So one clever user fig-
ured out that one could draw a happy face with marker on
a piece of white paper, stick that over the chair, and the
machine would happily snap the picture.

The real requirements were ignored in the rush to be
clever, with predictably poor results.

HOW WE DO IT

So how do you find out what’s in the client’s head? At The
Pragmatic Programmer’s offices, we use “special equip-
ment” (picture a 1950’s mad scientist’s laboratory replete
with buzzing vacuum tubes, arcing Jacob’s Ladders, and
cranial implants). If that doesn’t work, or if we’re out in
the field where health and safety restrictions prevent us
from using our “special equipment”, we resort to the old-
fashioned method of asking questions, both of the client
and of ourselves.

What is the users’s level of sophistication? What is the
context in which the software is used? Real-time on the
factory floor? In a life-critical system? For a home gro-
cery list? What is the lifetime of the application? Unused
after next week, or do you need to worry about the year-
2038 bug? What are the risks? Not just the development
or technical risks, but what are the sponsor’s risks in tak-
ing on this project?

The best way to get these questions answered, of course,
is to always involve the users as you go along. Seek fre-
quent feedback to make sure you hear stories about any-
one making smiley faces as soon as it happens.4 Maintain
short iterations with frequent deliveries, and work with
the real users directly as much as possible. User represen-
tatives (such as a supervisor, manager or director) gener-
ally aren’t as representative as we’d all like to think.

In our perpetual rush to jump in and start coding to the

4Again, the longer the gap before you get feedback the higher the
likelihood of getting feedback in the form of a subpoena.

first neat idea we come across, we run the risk of get-
ting locked in to a half-baked idea too early. Instead, try
to cultivate emergence: Allow the solution to find itself
where you can. Part of a developer’s job is to provide a
fertile ground in which ideas can grow. This means hav-
ing code that is agile: code that supports rapid reassembly
so you can try things out. Code that is easy to refactor, or
that uses flexible configuration and/or metadata to facil-
itate rapid—but reliable—change, bolstered by a reliable
safety net of complete revision control and competent unit
tests.

Does all of this really work?

Yes, it does. We’ve done it successfully, we know other
people who’ve done it successfully. It’s lot of work, and
it’s a lot of hard work, and despite our best intentions,
it might still not be a success due to factors beyond our
control. So why do we bother with it all?

Because, as Brooks said, we programmers create. We can
create awe-inspiring works with little more than the ex-
ertion of the imagination. Why do we do it? We do it
for the pleasure of watching them show it off to others,
of watching them use in novel ways we’d never imagined.
For the thrill of watching millions on millions of dollars
in transactions flow through your application, confident
in the results. For the joy of building and being part of a
team, and for the satisfaction of knowing that you started
with a blank canvas and produced a work of art. And if
you’ve gone to all that trouble, we think you should “sign
your work”. You should be proud of it.

It is, after all, a work of art.

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 8

www.pragmaticprogrammer.com

References

[Bec00] Kent Beck. Extreme Programming Explained:
Embrace Change. Addison-Wesley, Reading,
MA, 2000.

[Bro95] Frederick P. Brooks, Jr. The Mythical Man
Month: Essays on Software Engineering. Addi-
son-Wesley, Reading, MA, anniversary edition,
1995.

[HT00] Andrew Hunt and David Thomas. The Prag-
matic Programmer. Addison-Wesley, Reading,
MA, 2000.

[Sen90] Peter Senge. The Fifth Discipline: The Art and
Practice of the Learning Organization. Cur-
rency/Doubleday, New York, NY, 1990.

c
�

2001 The Pragmatic Programmers, LLC, All Rights Reserved. Page 9

