
WHY DON’T MORE DEVEL-
opers use unit tests? After all,
unit tests help produce better-
designed systems and more ac-
curate code. The recent rise of

extreme programming (XP) and the Gamma/Beck xUnit test-
ing framework has brought unit testing into the daily conver-
sation of many coders (see this article’s StickyNotes for refer-
ences). But still, many (perhaps the majority of) programmers
avoid writing them. This article is an attempt to change those
developers’ minds.

If you’re a developer who isn’t currently using unit tests, then this article will
show you some reasons to start and, we hope, convince you that writing tests for
everything you do will actually make your job easier and your systems better. And
if you’re a developer who is testing as you code, then maybe the article will help
you feel just a little smug.

If you are a professional tester or manager, we hope to give you some insight
into what it’s like to write unit tests as you write code. We’ll help you talk with de-
velopers about their testing and give you some ammunition to help convince them
of the merits of consistent and comprehensive testing.

What qualifies us to talk about this? We’re programmers who have used all of
the bad developer excuses in this article. But now we know better…honest.

Let’s look at unit testing by first sitting in on a development session as a pro-
grammer starts to attack a particular problem. We’ll watch her use tests to give
herself confidence, and to break her work into bite-sized chunks. We’ll see how
simple it is to write tests, and how
the process of “test a little, code a lit-
tle” makes our developer more pro-
ductive.

Then we’ll look at some of the rea-
sons developers give for not writing

Q U I C K L O O K

■ How to handle common reasons for
not testing before you code

■ 3 surprising benefits of unit testing

32 STQE JANUARY/FEBRUARY 2002 www.stqemagazine.com

Testing

Love
Unit
Testing

Learning
to

Improving development through the practice
of testing before you code
B Y DAV E T H O M A S A N D A N DY H U N T

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

unit tests, along with our counter arguments. Finally, we’ll look
at some surprising benefits that come from unit testing—things
that have nothing to do with testing itself.

Test a Little, Code a Little
Anne the developer looks at the whiteboard for her next task. It
seems that the server folks need a class that manipulates file-
names. First up is a method that will generate a filename with a
specified extension given an existing name. Pass it “fred” or
“fred.xml,” and it generates names such as “fred.txt” or
“fred.bak.” Not too difficult, she thinks. As Anne programs in
Java, and since this is the first of a number of filename manipu-
lation routines, she decides to use a new package to hold the
code. She makes a directory to hold the package source, then
creates a subdirectory within it to hold the tests (see the sidebar
below). Now she’ll need to write some code.

Anne has developed a habit when creating new classes—she
starts by writing a minimal source file. All this does is declare a
package to hold her code, and define an empty class (in this
case called NameMangler). She’ll add the details later. Though
the following code is Java specific, Anne’s unit testing habits are
good examples to follow in general.

package com.mycompany.server.fileutil;
public class NameMangler {

}

Then she goes into the “test” subdirectory and writes the start
of the unit test. She always writes a basic smoke test first, sim-
ply creating an object of the class she’s testing.

package com.mycompany.server.fileutil.test;
import junit.framework.*;
import com.mycompany.server.fileutil.*;

public class TestNameMangler extends TestCase {
// … standard setup code …

// Test object creation
public void test_smoke() {

NameMangler n = new NameMangler();
}

}

Since Anne uses the JUnit framework (see the StickyNotes for
pointers), she can write a Java class containing a number of test
methods. In this case, Anne had the name of the test class (Test-
NameMangler) mirror the name of the class she’s testing. It
contains a single test method (for now), test_smoke.

Anyway, that’s enough coding; it’s time to see if it runs.
Anne uses the Ant tool to build her software, so she types “ant
test” at a command prompt. It compiles the two new files and
runs the entire application’s unit tests, including her new one.
Everything works.

Now why did she go to all that trouble? There’s no real code
in place, and yet she ran every test in the system. Well, Anne
finds it useful for a number of reasons. First, it serves as a quick
sanity check. (Did she get the directories and package names
right?) Second, it confirms that the tests are running against the
code they are supposed to be testing. Third, it checks that she
hasn’t inadvertently done something bad to the rest of the sys-
tem. Finally, it breaks the ice. As a programmer, there’s some-
thing scary about starting to code and being faced with a blank
editor buffer. Writing these few lines takes us beyond that; now
we’re just adding stuff to an existing code base.

Anne gets on with the task at hand. Her class has a con-
structor that takes a filename (with or without an extension) as
a parameter. The class also provides a method change_ext that
returns a new filename with a different extension. The first
thing she does is to alter the smoke test (passing the filename
“fred” to the constructor). While she’s in there, she writes an-
other test method that exercises the change_ext method (which
she has yet to program). The test will pass NameMangler a
filename with no extension and check that the new extension is
correctly appended.

public void test_with_no_ext() {
// Create a new NameMangler to test
NameMangler n = new NameMangler("fred");
// and make sure it adds ".txt" to the base name
assertEquals("fred.txt", n.change_ext("txt"));

}

She then compiles and runs the tests again, and the compilation
fails. No surprise, because she hasn’t yet changed the construc-
tor to take an argument, and there’s no method change_ext.
Anne knew all that, but she compiled anyway, just to see it fail.
That way, she’d know that the code she was about to write
makes a difference—it will fix a failing test. Writing the test as

34 STQE JANUARY/FEBRUARY 2002 www.stqemagazine.com

Putting Tests in Place
Decent tests will probably double the number of source files in a proj-
ect. Clearly you need to manage all this extra code. We favor a simple
set of rules (though other people do it differently):

1. Create a “test” subdirectory to hold the tests for the code in a par-
ticular directory.

2. Write a separate test file for each source code file.

3. Organize so you can run individual unit tests, all the tests in a file,
all the tests in a directory, and all the tests in the system.

4. Ensure that both the building and running of the tests are auto-
mated. This means the inspection of the results must be automated,
too, wherever possible. Manually checking a log file for the correct val-
ues doesn’t cut it.

How does this work in practice? For our Java projects, we’ve started
using the Ant build system to manage both our builds and tests.
Typically, we give Ant a “test” target that looks for all directories called
“test” and runs any programs whose filenames start with “Test” in
these directories. By using a simple naming convention, we’ve ar-
ranged for tests to be added to the application’s test suite automati-
cally.

If you’re not using Ant, look for some similar way to automate your
tests. You can integrate the test tools into your favorite IDE. (If it does-
n’t allow you to add tools, why is it your favorite IDE?) The key is that
the complete test suite should never be more than a couple of clicks or
keystrokes away.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

36 STQE JANUARY/FEBRUARY 2002 www.stqemagazine.com

early as she did also lets her try the interface to the class she’s
writing before writing the class itself. In this way, the test acts
like any other code that uses her software, so she can see that
the interface she’s proposing feels right to use.

Anyway, now that she has some failing tests, she writes
code in the NameMangler class to fix them. She adds a name
parameter to the constructor, and creates the change_ext
method:

public NameMangler(String name) {
this.name = name;

}

public String change_ext(String new_ext) {
return name + "." + new_ext;

}

The change_ext method that she writes is trivial (all it does is
append the new extension to the existing filename). That’s all
she needs to pass the current tests, so that’s all she does. She
runs the tests, and everything passes. She can’t help grinning
slightly—having tests pass is a real psychological boost, even
tests as simple as these.

There’s a key issue implicit in this way of working—your
tests have to be simple to run, and they have to run fast. You
can’t afford to run them every minute or so if they take half an
hour to complete. This isn’t the place for long-running perfor-
mance tests, or for tests that enumerate every possible combina-
tion of input to your lottery number guessing routine.

Humming quietly to herself, Anne continues coding up her
class. She starts by writing a new test that tries to change the ex-
tension on a filename that already has an extension.

public void test_change_existing() {
NameMangler n = new NameMangler("fred.xml");
assertEquals("fred.txt", n.change_ext("txt"));

}

She runs the test, and it fails—her current implementation does-
n’t strip off any existing extension before appending the new
one. She writes a little more code:

public String change_ext(String new_ext) {
String old = name;
int dot_pos = old.indexOf('.');
if (dot_pos > 0)

old = old.substring(0, dot_pos – 1);
return old + "." + new_ext;

}

Her confident grin fades when she compiles and runs the tests.
It fails on the assertion in test_change_existing, claiming that
the routine returned “fre.txt,” not “fred.txt.” She quickly finds
the errant “–1” and removes it. The tests pass. She sips her cof-
fee while contemplating the next test to write. We’ll leave her
to it.

So Why Doesn’t Everyone Test?
Developers are creative people, and nowhere is their creativity
used more passionately than when they try to come up with
reasons not to test. Here are some common excuses for not do-
ing unit testing and some convincing counter arguments to try.

Writing tests takes too much time
Ask developers why they don’t write unit tests and the most
common response will be “coding tests takes too much time,”
or (a recent favorite) “I’m too busy fixing bugs to write tests.”
They’ll say that low-level tests are useless, and what matters is
the integration of the whole system. Developers feel they are
not productive unless they’re coding, and they feel that they’re
not coding unless they’re writing stuff that will execute in the fi-
nal application. Clearly, this is a shortsighted view. In reality,
coding is just a small part of the overall process—typing speed
isn’t the limiting factor to programmer productivity.

The truth is that unit testing greatly aids integration. Com-
bining many small faulty components into a complex whole is a
classic recipe for chaos. The time spent writing unit tests is re-
paid many times over when the components are integrated.
Subsequent lower maintenance also saves time and money. The
unit tests then act as a safety net, ensuring that changes do not
break existing functionality.

How do we convince developers that testing will save them
time? Reading about it clearly doesn’t work. The facts have
been available for a long time now with little apparent change
in developer behavior. The only way we have found that works
is to have developers try it. If you’re a developer, show others
how simple your tests are to write, and how they ultimately
save you time and stress. Offer to set up the stubs of unit tests
for their code, and help them get over the initial hurdles. If
you’re a tester, you could remind developers that the bug re-
ports you give them are a great basis for adding new unit tests.
After all, they should have a test that fails before they start at-
tacking a bug. Without that test, how will they know that the
bug is fixed? And if they don’t know, really know, that the bug
is fixed, then they risk repeating the whole exercise all over
again, wasting everyone’s time.

Sometimes, the only way to get people started is to mandate
tests. For example, code has to have unit tests before it can be
checked in to the source repository. Initial resentment tends to
dissipate when developers realize how the tests are actually
helping. Unit testing becomes a tool they rely on.

Tests break the flow
Some developers feel that incremental unit testing breaks their
flow. They’re writing large chunks of complex application code,
and they worry that stopping to write a test will make them
lose their place. This concern is misguided because once you
start writing unit tests, you find that the tests in many ways de-
fine the application. Your creative work is largely wrapped up
in designing and implementing the tests. The application coding
becomes a series of manageable steps, incrementally adding
small chunks of code to make the new tests pass. There’s no
need to keep vast amounts of context in your head as you pro-
gram. You can see this in the way Anne worked. She made most

The truth is that unit testing greatly
aids INTEGRATION. Combining
many small faulty components into a
complex whole is a classic recipe for chaos.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

www.stqemagazine.com JANUARY/FEBRUARY 2002 STQE 37

of her significant decisions while writing tests—how to package
the functionality, the method signatures, and so on.

The difficulty comes from the fact that this isn’t how pro-
grammers are taught to program. It doesn’t feel natural (at
first). This discomfort reinforces the feeling that tests are dis-
tracting.

The answer is to encourage developers to stick with it. It
takes most developers a week to get into the swing of driving
their coding from tests. Once it becomes natural, they’ll find the
constant cycle of test-code-test-code actually reinforces the flow
of development.

Testing is unnecessary
Programmers must have a certain level of confidence—every
day they face the challenge of creating something out of noth-
ing. Too often, though, confidence translates into swagger—
most code runs fine, and when it doesn’t, it’s easily fixed. Obvi-
ously, this four-line routine is correct, so why waste time on a
test? On single-person projects, this philosophy sometimes
works.

But even the best developers make mistakes. In fact, the best
developers are probably responsible for the trickiest bugs. Once
these bugs get into the overall application, they’re free to inter-
act with other developers’ bugs, making diagnosis very difficult.
Look at Anne’s trivial off-by-one bug. Her code ran fine, it just
produced a subtly wrong answer. If the buggy code had been in-
tegrated into the full application, it could have resulted in files
getting lost, or existing files being overwritten. Other develop-
ers would waste time deciding that although it was their code
that was generating these wrong files, the fault wasn’t theirs.

We’ve worked with many good developers. Without excep-
tion, once these developers started using rigorous unit tests,
they discovered that their code had more bugs than they’d real-
ized. Because they now use unit tests, they’ve become better de-
velopers. If anything, their swagger can be even more confident.

Testing is too complicated
There is a group of coders who don’t write unit tests because
they’re already at their limit. They feel that adding unit testing
to their load would melt them down. These are precisely the de-
velopers who benefit most by unit testing.

Our experience is that many of these developers are strug-
gling because they aren’t truly in control of what they’re doing.
They write code by accretion, adding a little functionality here,
patching a deficiency there, never really knowing when they’re
finished. (You can spot this style of development from the code
—massive routines full of repetitive conditional statements, des-
perate comments, and reams of tracing spew.)

Contrast this with Anne’s style of working. She may not be
any better technically, but she’s always in control. All her steps

are small, and she always knows when she’s done. Her work al-
ways follows the same basic pattern—decide on functionality,
write a test, then write code to pass the test—so she never feels
lost.

Anne’s style of testing makes life simpler regardless of cod-
ing skill. Simplicity means control, which leads to better code.

I’ve got a gazillion lines of legacy code
There’s no denying it. It is very, very difficult to add unit tests to
a big-wad-o’-legacy code. The code probably isn’t structured to
make testing easy. Even if it is, there’s a tremendous overhead in
getting the tests in place. A well-tested system will probably
have more lines of unit test code than production code, so
telling your boss that you want to add a complete set of tests to
a large legacy system is likely to result in your spending time
testing your résumé, not your code.

Our recommendations here are pragmatic. It’s unreasonable
to expect a developer working on legacy code to have a com-
plete set of tests, so don’t even go there. Instead, look for the
most payback. Typically, this comes when you’re forced into
making changes to the legacy code. As you make those changes,
write test cases. If the change is in response to a bug report, first
write a test that exposes the bug, then fix the code, then rerun
the test to show your fix worked. Since bugs tend to breed in
clusters, see if you can work out the chain of circumstances that
led to the bug in the first place. If you’re working on code that
talks to a legacy system via an external interface, write test cas-
es first to make sure the interface works as expected. Do not
throw away any of the tests—find a way to keep them with the

What Does a Unit Test Test?
Let’s start with a quick definition: Unit tests help you verify a
small chunk of code (typically a particular path through a
method or function). Unit tests typically do not test application-
level functionality—we leave that to integration, acceptance,
functional, performance, and other two-dollar-word tests.

So what do you test with a unit test? Some folks have
mechanical rules (every public method needs at least one test,
every exception needs to be tested, and so on). We prefer a
more practical approach. Some public methods, such as
attribute getters and setters in Java programs, are so trivial that
writing a unit test for them would be a waste of time. (Besides,
you’ll probably end up using them, and hence testing them indi-
rectly, in other tests.) Other times, a method will encapsulate so
much functionality that testing it becomes effectively writing an
acceptance test for the application itself, and that’s too much
for a unit test.

The sweet spot for unit testing is that middle ground—the
worker methods that make up the bulk of an application, any
methods that do something nontrivial, or methods that may fail
when the environment changes (so that when the environment
does change, you’ll know what broke). Normally you’ll test pub-
licly accessible methods, but that’s not a rule. If you have a pri-
vate method that’s complex, test it too. The earlier you find a
problem, the easier it is to diagnose and fix. (Of course, if the
method is so complex, perhaps it deserves a class of its own.)

Because they now use unit tests,
they’ve become BETTER developers.
If anything, their swagger can be even
more confident.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

38 STQE JANUARY/FEBRUARY 2002 www.stqemagazine.com

legacy code. This way your set of unit tests will grow gradually
over time.

Some code can’t be unit tested
Having spent some time countering excuses for not doing unit
testing, we have to ’fess up. There is one excuse that carries
weight. What can developers do if they’re interfacing with
hardware, or an external system that’s outside their control?
Sometimes these external components just won’t play ball dur-
ing testing. They may be too slow, or they may not deliver the
same results each time they’re called (often for very good rea-
sons—a stock ticker that gave the same price back on every call

would make testing easy, but might make regulators suspi-
cious). To overcome this, developers could write test harnesses
that simulate these external components. But for the more com-
plex interfaces, you have to weigh the benefits against the costs.
You can bet that NASA tests its software against test rigs, both
software and hardware, but their budget probably exceeds
yours.

In these cases, we again suggest taking a pragmatic ap-
proach. Design the software so that as much as possible can be
unit tested without relying on these external interfaces. (This
decoupling is good programming practice anyway.) Then put in
place a solid set of integration tests that do the equivalent of
unit testing on the remainder of the code.

User interface code is a special case. Technologies exist that
let you perform unit tests right out to the screen, keyboard, and
mouse level, but they tend to be inconvenient. Our advice is to
design a thin GUI layer, with a well-defined interface to the rest
of the application. Test up to this layer, and then leave the GUI
testing to the test team.

The Benefits beyond Testing
Many developers don’t realize that unit testing does far more
for them than simply test code.

First, tests aren’t a tool to help you get some code right.
Tests are an environment in which the only code that runs is
code that is correct (or at least as correct as the tests are com-
plete). The tests are a continuously available sanity check and
safety net. The comedian Steven Wright says, “You know how
it feels when you lean back in a chair so far that you start to fall
over, and then you catch yourself? That’s how I feel all the
time.” We suspect that many coders share that feeling of insta-
bility and imminent danger every time they alter code. Unit
tests cure this—you know you haven’t botched the system be-
cause the whole system’s tests still run.

Second, tests affect the design of your code. When develop-
ers get into the habit of unit testing everything, they discover
that some of what they write is hard to test. Sometimes they
find themselves having to construct elaborate frameworks to
test a single method. Sometimes they find that the method is

hard to test because it handles many different cases. And
sometimes things are hard to test because the code that does
the real work is buried deep in the program’s guts. Are these
reasons not to test? On the contrary, this kind of discovery is
one of the most valuable effects of testing, because the tests
are telling you secrets about the structure of the code. Listen
to the tests, and refactor (a fancy way of saying restructure)
accordingly. The code will be better for it. Methods will have
clearly defined functions. The class hierarchies are flatter, and
they more accurately reflect the business value of the applica-
tion. There’s less coupling between classes. All of this makes
the code easier to write and simpler to maintain.

Third, tests reduce panic. Panic is the developer’s worst ene-
my, particularly when you’re looking at client delivery in a
week and your system seems to be about as stable as a Holly-
wood marriage. Every bug fix breaks three other things, and
bugs that you could swear you’d fixed two days ago suddenly
pop up again. However, you can break the cycle of glitches.
How? Stop fixing bugs, and start writing tests. You’ll discover
something surprising. The tests will find many little problems in
code that you thought were correct. And as you fix each of the
little problems, your overall system stability will improve.
Many small bugs lead to chaotic system behavior, and the easi-
est way to find them is one at a time.

Even if the project sky isn’t falling, the pacing that tests im-
pose is a wonderful cure for the frenzied code-like-crazy dis-
ease. Testers who use a discipline of unit testing tend to lose
that manic look. They appear more confident and changes
don’t disorient them. They even appear to be having fun.

Any practice that makes development more accurate, more
maintainable, easier to understand, and more fun must be worth
a look. So if you’re a developer, download a copy of JUnit (or a
testing framework for whatever language you’re using) and start
writing tests for your current project.

Don’t be put off if things seem hard or unnatural at first. Af-
ter all, there are things in life that suddenly click—one minute
you don’t get it, the next you do. As a kid, learning to ride a
bike can be a couple of days of frustration and skinned knees.
Then suddenly, you just start pedaling and everything works.

Unit testing can be like that. You do it for a while somewhat
grudgingly. It works, but what’s the big deal? Then suddenly
you realize that testing has become part of your coding style—it
has entered your blood and settled into your routine. You have
become (as Kent Beck and Erich Gamma would say) test infect-
ed. There is no cure. STQE

Dave Thomas and Andy Hunt are partners in The Pragmatic
Programmers, a consultancy specializing in agile development
and training. They are authors of the books The Pragmatic Pro-
grammer and Programming Ruby, and founding signatories of
the Agile Alliance. Their philosophy is that the competence and
attitude of individual developers is the single most important
component of a successful project. They give talks and offer
courses based on this idea worldwide. See more of their articles
at www.pragmaticprogrammer.com

Any practice that makes development
MORE ACCURATE, more main-
tainable, easier to understand, and more
fun must be worth a look.

STQE magazine is produced by STQE Publishing,
a division of Software Quality Engineering.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

