
1 0 0 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

I
n IEEE Software’s May issue, Steve Mc-
Connell asked, “Why doesn’t anyone
want to talk about software construc-
tion?” Well, we want to, and we do!

Why? Because for us, construction is the
ultimate embodiment of the software devel-
opment process. After all, our best architec-

tural ideas, elegant designs, or insightful re-
quirements analyses don’t count for much
until they are built. How then, could you
consider the topic of actually building soft-
ware in any way less interesting than topics
of design, architecture, process improvement,
and so on?

Of course, coding is not a neat and tidy
subject (which might explain why many
avoid writing about it). With our architect
hats on, for instance, we can settle into a
comfortably pristine universe of coolly ele-
gant designs, where the world of our mak-
ing will solve the problems we face. And un-
til code exists to implement our architecture,
we can live quite nicely in this unvalidated
fantasy world.

But as implementation gets underway, life
becomes much more challenging. Coding is
messy. It’s subject to all manner of ugly real-
ities, from defects in compilers and data-
bases to errors in our instructions to the
computer. Engineering issues enter the pic-
ture—performance, memory usage, memory
leaks or garbage-collection problems, syn-
chronization and thread-safety concerns,
and so on. The art of programming lies in
that nether region between the hopeful
wishes of an elegant architecture and the
hard grindstone of technical details. What
we need to talk about isn’t how to solve the
low-level engineering problems (there’s
plenty of Web space and traditional ink de-
voted to those issues), but instead how to
write a program: how to reconcile our men-
tal view of the world with the real world as
their interaction unfolds before us.

So that’s why we enjoy writing the Soft-
ware Construction column: it helps us think
about techniques and tools that let us create
real software in the real world. The last two
columns addressed ways of deferring some
real-world problems: “Mock Objects” (May/
June), which let us unit test components
with improved isolation from other compo-
nents, and “Naked Objects” (July/August),
a technique that can help us focus on ob-
jects’ behavioral completeness—the real
functionality of a system—without being
distracted by workflow or user interface is-
sues. But there are many distractions from
the real world that conspire to undermine
our efforts, and we need a general-purpose,
effective method to keep encroaching prob-
lems at bay.

software construction

Zero-Tolerance Construction
Andy Hunt and Dave Thomas

E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

S e p t e m b e r / O c t o b e r 2 0 0 2 I E E E S O F T W A R E 1 0 1

SOFTWARE CONSTRUCTION

One more wafer-thin fix
In Monty Python’s Meaning Of

Life, the remarkably large Mr. Cre-
osote devours a remarkably large
meal. He is offered one final mint to
finish off the dinner—but not to
worry; it is, after all, only a wafer-
thin mint. However, it puts Mr. Cre-
osote over the top, and in fine
Monty Python style, he explodes.
Apparently you can’t judge a wafer
by its thickness.

While we can easily be fooled into
thinking that an architecture or a de-
sign is complete and in good working
order, actual code is less forgiving.
We can’t fool ourselves: the compiler
is validating our instructions, and
our unit tests and customers are vali-
dating the functionality. Lo and be-
hold, we discover that our neat de-
sign doesn’t work as we intended.
“But it’s so close—just this one little
kludge will fix it. No one will even
notice. It’s wrong, but I’ll add it any-
way, and then it will work. Then I
can go back and fix the whole thing
correctly.” So close. But oh, bad luck.
One more little fix is required. But
this is the last bug, surely. And on it
goes.

Unfortunately, you can’t judge the
effects of hack by its size. One piece
of bad code will have a certain nega-
tive effect on the system, but two
pieces of bad code—however small—
will have a negative effect that’s more
than double. No hack is an island;
code’s interrelated nature creates a
complex system such that any hack
that isn’t quite right can cause collat-
eral damage; that is, damage to seem-
ingly unrelated parts of the program.
This damage must then be addressed
(usually in the same code-and-fix,
hasty manner) and the death spiral
begins. Add some time pressure from
a demanding client, fast-moving mar-
ketplace, or impatient venture capi-
talist, and you’re almost guaranteed
to create more bad code than good,
quickly dooming the project.

How can we stop this descent
into failure?

No Broken Windows
Researchers in the field of crime

and urban decay study similar prob-
lems in the inner cities. In a well-
known study,1 researchers wanted to
understand why some buildings in
poor neighborhoods fell into dilapi-
dated, crime-infested ruin, while
others—in equally challenged ar-
eas—survived. Apparently, all it
takes to destroy a building is a single
broken window.

The effect works like this: a win-
dow is broken, probably by accident,
but it is left unrepaired. Then per-
haps another window is broken.
Maybe it’s not an accident this time.
Next, graffiti appears, followed by
litter. Minor structural damage be-
gins, and tenants start to flee. Major
structural damage occurs, and the
building’s owners abandon it as the
cost to repair the building exceeds
their investment. Now the criminals
move in, and all is lost. Once this es-
calation begins, its progress is rapid
and difficult to stop. However, if you
can catch it early, you can save the
neighborhood.

So, to prevent major, catastrophic
loss, we must focus on preventing the
triggering mechanism from occur-
ring. If we can fix the little problems
as they occur, then we’ll have fewer
large problems with which to con-
tend. New York City’s police depart-
ment adopted the Broken Windows
theory as part of former New York
City mayor Rudy Giuliani’s crack-
down on crime. This approach of at-

tacking the small problems—graffiti,
littering, and pan-handling—led to a
dramatic decrease in major crimes.
From 1993 to 1997, felonies in New
York City dropped 44 percent, mur-
ders 60 percent, and robberies and
burglaries decreased by nearly 50
percent.2 Minor crime provides a fer-
tile breeding ground for major crime;
eliminate the minor crime and you
cut down the major crime.

To see similar benefits on projects,
we adhere to our pragmatic practice of
No Broken Windows. We must sup-
port and encourage the notion that
there is no “later.” However small and
trivial a bug or design defect might
seem, it has a negative effect on devel-
opers that will only grow larger over
time and will begin to affect other ar-
eas of the project as well. The time to
fix it—and fix it properly—is right
now. If this requires some modifica-
tion to the schedule, then so be it. The
alternative is a slow, spreading code
rot and attendant developer malaise
that can quickly exceed our capacity
to repair. There are some fixes, how-
ever, that can’t be addressed in a timely
manner. In that case, we suggest you
“board it up.” Make it clear to every-
one involved that this feature is known
to be broken, and put up enough “ply-
wood and police tape” so that no one
trips over the broken item or is in any
way misled into thinking that it might
work. It’s as important to show the
team—and yourself—that you’re on
top of the situation as it is to ensure no
one else gets hurt. Just as with the
apartment building, it doesn’t take
much for a few broken pieces of the
project to get out of control, rendering
the situation unrecoverable.

Many of the agile methodologies
support this notion of minimizing
technical debt and of maintaining a
zero-tolerance policy toward ugly
hacks. In The Pragmatic Program-
mer,3 we describe this principle using
the Broken Windows metaphor. Ex-
treme Programming (XP)4 relies on
constant refactoring to maintain the
quality of the code base at consis-
tently high levels. With Scrum5 you
know that the software on which you
are working will be released at the

“But it’s so close—
just this one little
kludge will fix it.

No one will
even notice.”

1 0 2 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 2

SOFTWARE CONSTRUCTION

end of the 30-day iteration. There is no “later” for the
feature you are working on. At the end of the iteration,
the features that are shipped are solid, possibly at the ex-
pense of others that will be deferred to the next iteration.

XP recommends that you never let the sun set on bad
code. That is, if at the end of the day the piece that you
are working on (and any other hacks you had to add)
doesn’t measure up to the system’s quality expectations,
you should abandon it. Throw away the code and try
again tomorrow. While this approach might sound ex-
treme, it does help to keep ill-conceived, broken code out
of the system in the first place. Fred Brooks told us long
ago to plan on throwing out our first version of soft-
ware, and the industry continues to ignore that advice at
our collective peril.

Not just construction
Of course, the No Broken Windows principle applies

to more than just code. Anything that is perceived as
broken—whether it is a bug in a user-visible feature, part
of the development infrastructure (including automati-
cally building and testing the project), part of require-
ments or documentation, a bad design decision, or a
poor technological choice—must be fixed before it can
cause more damage and grow even larger. In fact, prob-
lems with process and teams can escalate even faster
than problems in code: software doesn’t have morale to
damage, but teams do. Once damaged, morale is consid-
erably harder to fix than process or code.

The wider applicability of No Broken Windows demon-
strates another reason why it’s difficult to talk about con-
struction alone: construction never happens by itself. Ar-
chitecture, design, code, and requirements are different
facets of the same activity. As an industry, we cannot as-
sume that we’ve fixed all the coding problems and move on
to the more interesting problems. It’s all the same problem,
and we need to address all its facets to be successful. The
best way to stay on top of the project’s facets is to not let
problems get out of hand. Fix broken windows as soon as
they occur, and your project will thrive.

References
1. J.Q. Wilson and G. Kelling, “The Police and Neighborhood Safety,” The

Atlantic Monthly, vol. 249, no. 3, Mar. 1982, pp. 29–38.
2. J.A. Greene, “Zero Tolerance: A Case Study of Police Policies and Prac-

tices in New York City,” Crime & Delinquency, vol. 45, no. 2, Apr.
1999, p. 171–188.

3. A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman
to Master, Addison-Wesley, Boston, 2000.

4. K. Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, Boston, 1999.

3. K. Schwaber and M. Beedle, Agile Software Development with Scrum,
Prentice-Hall, Englewood Cliffs, NJ, 2001.

Andy Hunt and Dave Thomas are partners in The Pragmatic Programmers, LLC.
They feel that software consultants who can’t program shouldn’t be consulting, so they keep
current by developing complex software systems for their clients. They also offer training in
modern development techniques to programmers and their management. Contact them via
www.pragmaticprogrammer.com.

How to
Reach Us

Writers
For detailed information on submitting articles, write for our Edi-
torial Guidelines (software@ computer.org) or access
http://computer.org/
software/author.htm.

Letters to the Editor
Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or daytime phone number
with your letter.

On the Web
Access http://computer.org/software for information about
IEEE Software.

Subscribe
Visit http://computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine subscriptions to
address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE and Computer Society
membership to member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received a damaged copy,
contact help@computer.org.

Reprints of Articles
For price information or to order reprints, send email to
software@computer.org or fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article, contact William
Hagen, IEEE Copyrights and Trademarks Manager, at
whagen@ieee.org.

How to
Reach Us

