
Extracted from:

Seven Mobile Apps in Seven Weeks
Native Apps, Multiple Platforms

This PDF file contains pages extracted from Seven Mobile Apps in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Seven Mobile Apps in Seven Weeks
Native Apps, Multiple Platforms

Tony Hillerson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Candace Cunningham, Molly McBeath (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-148-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Time and time again in my journey as a mobile developer, clients have asked
about cross-platform tools. “We want an iOS and an Android app; can we do
that with less time and money with tool x?” they ask. I have to confess to
feeling irritated by this sort of question. For many reasons, some valid, some
perhaps elitist, I have a gut feeling that mobile development should be done
with the official tools.

On the other hand, some of my reluctance to use anything but the platform-
native frameworks is due to the number of bad apps out there built with
shortcut solutions, especially those that try to use a web view as the shortcut.
Then again, developing apps can’t happen in a vacuum. If there’s no business
reason to build apps, developers will be out of a job. It’s our responsibility as
developers to guide the stakeholders in the right direction, but also to be able
to see the development process from the stakeholders’ point of view. Can we
build their apps with less time and money? Can we make quality apps, not
shortcuts? And can we keep the codebase maintainable?

Xamarin was the first tool that caused me to rethink my assumption that all
cross-platform tools were intrinsically bad. With Xamarin, you write native
apps, not web-view apps, using platform-native APIs for iOS, Android, or
Windows. You can share code between all of these. You write the apps in C#,
and they run natively on the Mono .NET runtime,1 so you have access to the
.NET platform as well as the host platform. That’s a powerful combination.

All things being equal, I still prefer development with the official tools; I like
the official tools. But after using it, I believe that in a business setting, with
limited time and resources, Xamarin is a strong contender as a powerful tool
for efficiently building apps for multiple platforms.

1. http://www.mono-project.com/

• Click HERE to purchase this book now. discuss

http://www.mono-project.com/
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

A Calculator App

This week we’ll build a calculator app. It’s going to have a UI with a display
and a grid of buttons and will run on both iOS and Android. We’ll use shared
code for the calculator “engine” so that we have to write that only once. The
code will be well tested, both in business logic and on the UI. Finally, we’ll
add a feature allowing the user to convert a value in the calculator as if it
were a currency value, from one currency to another.

On Day 1 we’ll build out the iOS and Android UIs and see how platform-spe-
cific development works in Xamarin. Then, on Day 2, we’ll test and build a
calculator model, wire it up to the UI, and then test the UI. On Day 3 we’ll
use Xamarin.Forms to rewrite a cross-platform UI, cutting down the platform-
specific code to almost zero. We’ll finish out Day 3 by consuming data from
our currency-conversion API. Let’s get started!

Day 1: Adding Up the Platforms
Or, Building an iOS and Android View

Today we’ll dive in and build a Xamarin solution, or set of projects, which will
have both an Android and an iOS UI for a calculator. Most of the code we

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

write will use native APIs and widgets on those platforms, just written in C#
instead of native code.

Creating and Setting Up a Solution
The first step is to use Xamarin Studio to create a new solution. We want to
build this app for both iOS and Android, so we need to choose to build a
cross-platform app. We’ll start with the native single-view app this time. On
Day 3 we’ll rebuild the UI using Xamarin.Forms, so don’t choose that option
at this time. We also want to have unit tests generated, so make sure you
check the box labeled Add an Automated UI Test Project.

The app name should be set to Calc, and the identifier should be set to your
reverse domain name. The solution will contain an iOS-native project, an
Android-native project, and a shared-code project. There are two options for
how to configure that project, and we want it to be a Portable Class Library,
or PCL. Once the solution is created, you’ll see the project layout in the
Solution pane.

The solution contains four projects: Calc.Droid for
Android-specific code, Calc.iOS for iOS-specific code,
Calc for shared code, and, finally, Calc.UITests for all the
testing needs of the solution. Let’s look at some of the
generated code in the native projects. First, we’ll look at
the main Android activity.

Xamarin/xamarin_01_02_cleanup_generated_comments/Calc/Droid/MainActivity.cs

namespace Calc.Droid {

[Activity(Label = "Calc.Droid", MainLauncher = true, Icon = "@drawable/icon")]
public class MainActivity : Activity {

int count = 1;

protected override void OnCreate(Bundle bundle) {
base.OnCreate(bundle);
SetContentView(Resource.Layout.Main);
Button button = FindViewById<Button>(Resource.Id.myButton);

button.Click += delegate {
button.Text = string.Format("{0} clicks!", count++);

};
}

}
}

If you’ve gone through the Android chapter or are familiar with Android pro-
gramming, you can pick out the Android APIs right away, just transcribed
into C#. With Xamarin, access to native APIs on the underlying platform is

• Click HERE to purchase this book now. discuss

Day 1: Adding Up the Platforms • 7

http://media.pragprog.com/titles/7apps/code/Xamarin/xamarin_01_02_cleanup_generated_comments/Calc/Droid/MainActivity.cs
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

gained through the C# versions of those APIs. So, for instance, in this example
Android’s Java android.app.Activity becomes Xamarin’s C# Android.App.Activity and
the onCreate life-cycle method is OnCreate, with a capital O.

You can see that some extra configuration can be done using C#’s attributes,
in this example the code in brackets above the MainActivity class definition.
These attributes are in many ways analogous to Java attributes.

The iOS-generated code is similarly familiar to iOS developers, just in C#
instead of Objective-C. Currently, Xamarin mirrors the Objective-C APIs, not
the Swift versions. Have a look at the generated AppDelegate, shown here.

Xamarin/xamarin_01_02_cleanup_generated_comments/Calc/iOS/AppDelegate.cs

namespace Calc.iOS {

[Register("AppDelegate")]
public class AppDelegate : UIApplicationDelegate {

public override UIWindow Window { get; set; }

public override bool FinishedLaunching(
UIApplication application, NSDictionary launchOptions) {
return true;

}
}

}

In Objective-C the application delegate conforms to the protocol UIApplicationDel-
egate; in Xamarin it extends the C# class UIApplicationDelegate and is registered
with the Register attribute.

Overridden method names try to match the somewhat exotic Objective-C style
as best as they can; for instance, in this example FinishedLaunching is analogous
to application:didFinishLaunchingWithOptions, and it will be called when the application
is launched and running, just as with any iOS app.

As we get further into the code, we’ll see what more and more of the C# syntax
means, so don’t worry if you don’t understand everything in even these simple
generated-code samples. Let’s get started building out the app now, beginning
with the iOS view.

Building an iOS Calculator View
When working with Apple’s official tooling, iOS views are generally built with
interface bundles and storyboards. These files are edited in Xcode’s visual
Interface Builder editor, and the file formats aren’t meant to be hand-edited.

Xamarin’s strategy for dealing with this fact of iOS development has been to
build visual tools that generally copy Interface Builder feature for feature and

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7apps/code/Xamarin/xamarin_01_02_cleanup_generated_comments/Calc/iOS/AppDelegate.cs
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

that operate on the same files that Xcode would. In fact, it’s possible to con-
tinue to use Xcode to edit all the view files, if you like. We’ll do everything
using Xamarin Studio. Let’s get started by adding a text field to act as the
calculator display.

Adding the Calculator Display

Get started by opening up Calc.iOS/Main.storyboard. You should see a simulation
of an iOS screen in the main view. This is where we can visually build the
app’s view. Make sure the Toolbox and Properties Pads are open by selecting
View > Pads > Toolbox and View > Pads > Properties.

From the Toolbox, drag a label control out onto to the screen and drop it in
the top-left side. As you get close to the left side of the screen, a guide line
should pop up around 20 pixels from the edge. It’s not important to be exact
at this point, however; we’ll adjust the label’s positioning next.

Adding Auto Layout Constraints for the Label

With the label selected, click it once more and you should
see the handles around the selection box change slightly,
replacing the circles with squares, as you can see here.

Each of these handles represents an Auto Layout constraint.
Auto Layout is Apple’s flexible layout system. Developers can add constraints
to views to tell the system how to resize and position elements on the screen
as the geometry of the view changes. Using Auto Layout can help you build
views that can work on an iPhone and an iPad, by having widgets resize
themselves or perhaps follow completely different rules based on the current
device. When a widget is in the mode where it has square handles, you can
drag the handles to create constraints relative to different parts of the UI, and
you can also edit constraints with other tools in Xamarin Studio, which we’ll
look at next.

Auto Layout is very powerful, but we can’t cover a lot of it today. You can find
a more in-depth overview in Introducing Auto Layout, on page ?. All we’ll do
right now is set up constraints to have the label position itself and resize to
keep to the full width of the screen.

Configuring Constraints and Other Properties

As a place to start, we can have Xamarin Studio add some suggested con-
straints. With the label still selected, go to the top of the screen and find the
constraint controls. Click the green + symbol, and some constraints should
be created based on where the label is positioned. To review the constraints,

• Click HERE to purchase this book now. discuss

Day 1: Adding Up the Platforms • 9

http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

go to the Properties Pad and select the Layout tab. You should see something
like this, even if the values are not exactly the same.

Change the values for the constraints to those listed here, adding any that
you need.

• Leading Space: 20
• Top Space: 20
• Trailing Space: 20
• Height: 60

Leading space is the space on the left side of the widget and trailing space is
on the right. Finally, to get the rest of the settings right for the label, go to
the Widget tab of the Properties Pad and change the following properties:

• Label Text: 0
• Alignment: Right
• Font: System 48 pt
• Background Color: Light Gray Color

Now, with the display configured, let’s make a quick change to be able to run
the app and see the results in the iOS simulator.

Viewing the Display

The code that Xamarin Studio generated for the iOS and Android projects
had some sample code that we don’t want to run right now. Instead of editing
the code yet, we can change the storyboard to use a generic view controller
instead of the generated one.

In the storyboard, at the bottom of the simulated iOS screen, select the left-
hand button.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

Then, in the Properties Pad, find the Class drop-down, which should contain
the property ViewController. This is the generated controller class that we looked
at first today.

Change this value to UIViewController, which is the
base view controller class. It isn’t a good idea to
ship like this, but this will allow us to simply run
the app and see the contents of the storyboard.

In the Solution Pad, right-click the Calc.iOS project
and select Run Item. This will compile the app
and deploy it to the iOS simulator. You should
see something that looks remarkably like what we’ve already seen in Xamarin
Studio in the storyboard.

So far, so good. Now let’s move on to creating
the calculator buttons. The buttons will be cells
in a UICollectionView, which is iOS’s widget for
a group of related views. It has a flexible layout
system that will allow us to lay the buttons out in a grid.

Adding the Calculator Buttons

Back in Xamarin Studio, go to the Toolbox Pad and drag a collection view to
the storyboard view. Set up constraints as in the list that follows. This time,
add the constraints using the constraint handles. Wherever a constraint from
the collection view is relative to the label, drag the appropriate handle to the
label.

• Top Space to Label Equals 0
• Align Leading to Label Equals 0
• Align Trailing to Label Equals 0
• Bottom Space to View Controller Top Layout Guide Equals 20

Next, edit the properties of the collection view, setting the background color
to white and its name to ButtonCollectionView. Then set the label’s name to Display-
Label. These will be the variable names we’ll use to reference these widgets in
the view controller code.

Setting the name of the collection view and label in the storyboard causes a
bit of magic to happen behind the scenes that is worth explaining here. If you
look at ViewController in the Solution Pad, you’ll see that you can twirl down the
item in the tree, revealing a file called ViewController.designer.cs. This is a generated
class that gets mixed in to ViewController and provides instance variables named
according to the name properties in the storyboard.

• Click HERE to purchase this book now. discuss

Day 1: Adding Up the Platforms • 11

http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

Speaking of the view controller, go and change the storyboard’s View Controller
property back to the ViewController class. We’ll be doing the rest of the work in
that class instead of in the storyboard.

Creating a Collection View Cell for Buttons

We could create a collection view cell in the storyboard, but we can also do it in
code. Here’s the class for the calculator buttons, which extends ‘UICollectionViewcell‘.

Xamarin/xamarin_01_04_ios_calculator_collection_view/Calc/iOS/ViewController.cs

public class ButtonCell : UICollectionViewCell {

public static NSString cellId = new NSString("ButtonCell");

UILabel label;

[Export("initWithFrame:")]
public ButtonCell(RectangleF frame) : base(frame) {

ContentView.Layer.BorderColor = UIColor.LightGray.CGColor;
ContentView.Layer.BorderWidth = 0.5f;

label = new UILabel();
label.TextColor = UIColor.Black;
label.TextAlignment = UITextAlignment.Center;
label.Frame = new CGRect(10, 10, 30, 30);
ContentView.AddSubview(label);

}

public void SetTitle(string title) {
label.Text = title;

}
}

The responsibility of this class is to configure the label and overall view of the
button, as well as to expose a method, SetTitle, to change the button’s label.
One interesting Xamarin-specific item of interest is the attribute decorating
the ButtonCell constructor.

The iOS constructor method for a collection view cell is called initWithFrame:,
but C# requires that a constructor have the same name as the class, ButtonCell
in this case. This Export attribute helps bridge that gap, telling Xamarin to
associate the two methods.

With the button cell defined, now let’s look at controlling the collection view
with ViewController.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7apps/code/Xamarin/xamarin_01_04_ios_calculator_collection_view/Calc/iOS/ViewController.cs
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

