
Extracted from:

Seven Web Frameworks in Seven Weeks
Adventures in Better Web Apps

This PDF file contains pages extracted from Seven Web Frameworks in Seven
Weeks, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven Web Frameworks in Seven Weeks
Adventures in Better Web Apps

Jack Moffitt
Fred Daoud

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Bruce A. Tate (series editor)
Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93778-563-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2014

http://pragprog.com

Day 2: Building Apps

Yesterday we saw most of the pieces we’ll need to build a link shortener, and
today we’ll put those pieces together to build the first version of it, called
Petite.

Today we’ll also look at basic front-end tasks with Webmachine and related
libraries as we build a web UI for Petite. You’ll see how to integrate HTML
templating into a Webmachine resource with mustache.erl,3 a Mustache
template implementation for Erlang.

Webmachine makes it easy to handle different types of incoming data to
support both human and API use of the same resource. You’ll discover that
representations of incoming data and the resource itself are important parts
of Webmachine.

Shortening Links

We’ll apply what we learned yesterday to build the first iteration of Petite, our
link shortener. This first version will be able to shorten links and redirect
incoming visitors to the corresponding real URLs.

First, create a new Webmachine project called petite. Starting from this shell,
we’ll keep expanding Petite as we go along.

Compression and Storage

Before we can write our Webmachine resource for Petite’s shortening API, we
must have (1) a way to shorten the link and (2) a lookup table that associates
shortened codes with their corresponding URLs. Erlang contains built-in tools
to help with both of these problems.

If you want to make a string of digits shorter, one easy trick is to write it in
a larger numeric base. For example, 10000000 in binary becomes 128 in decimal
and 3K in base 36. Using this, we can attach a number to each real URL,
incrementing the number each time. The short code returned can just be the
number represented in a high numeric base so that it’s as compact as possible.
Erlang can convert to different numeric bases up to base 36 with
integer_to_list(Number, Base).

Storing the lookup table can be done a number of ways, but the easiest is to
use an ETS (short for Erlang Term Storage) table. An ETS table is an in-
memory key value store that is built into the Erlang standard library. You

3. https://github.com/mojombo/mustache.erl

• Click HERE to purchase this book now. discuss

https://github.com/mojombo/mustache.erl
http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

can store arbitrary Erlang tuples in it, and the first element becomes the key
and the whole tuple is the value.

Putting these two pieces together, we can write a gen_server module, which is
a self-contained Erlang service that produces codes given URLs and returns
URLs given codes. There’s not enough room to fully explain gen_servers here,
which are part of Erlang’s standard library; if you’re interested, see Erlang
Programming [CT09] by Francesco Cesarini and Simon Thompson or Joe
Armstrong’s book, Programming Erlang [Arm13]. Let’s just look at the important
bits:

webmachine/petite/day1/petite/src/petite_url_srv.erl
-module(petite_url_srv).

%% public API
-export([start_link/0,

get_url/1,
put_url/1]).

-behaviour(gen_server).
-export([init/1,

terminate/2,
code_change/3,
handle_call/3,
handle_cast/2,
handle_info/2]).

-define(SERVER, ?MODULE).
-define(TAB, petite_urls).

-record(st, {next}).

%% public API implementation

start_link() ->
gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

get_url(Id) ->❶
gen_server:call(?SERVER, {get_url, Id}).

put_url(Url) ->
gen_server:call(?SERVER, {put_url, Url}).

%% gen_server implementation

init(_) ->❷
ets:new(?TAB, [set, named_table, protected]),
{ok, #st{next=0}}.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_url_srv.erl
http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

terminate(_Reason, _State) ->
ok.

code_change(_OldVsn, State, _Extra) ->
{ok, State}.

handle_call({get_url, Id}, _From, State) ->❸
Reply = case ets:lookup(?TAB, Id) of

[] ->
{error, not_found};

[{Id, Url}] ->
{ok, Url}

end,
{reply, Reply, State};

handle_call({put_url, Url}, _From, State = #st{next=N}) ->❹
Id = b36_encode(N),
ets:insert(?TAB, {Id, Url}),
{reply, {ok, Id}, State#st{next=N+1}};

handle_call(_Request, _From, State) ->
{stop, unknown_call, State}.

handle_cast(_Request, State) ->
{stop, unknown_cast, State}.

handle_info(_Info, State) ->
{stop, unknown_info, State}.

%% internal functions

b36_encode(N) ->❺
integer_to_list(N, 36).

❶ The public API of this module simply delegates to the server process. This
is common for gen_server implementations, since the server itself may later
change the internal message formats.

❷ We initialize the server by creating a new ETS table to store the codes and
their corresponding URLs, and we start the counter at 0.

Webmachine threads the State variable returned from a resource’s init
function through all the resource functions, and gen_server does the same.
You can see where Webmachine got the idea.

❸ Retrieving a URL is a simple matter of looking it up in the ETS table.

❹ Putting a URL into the server creates a code and then inserts a correspond-
ing entry. Notice that it increments the counter in the returned state.

• Click HERE to purchase this book now. discuss

Day 2: Building Apps • 7

http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

❺ Creating a code is as easy as integer_to_list, at least if you don’t need anything
higher than base 36.

gen_servers are usually attached to a supervisor process that ensures they keep
running and restarts them when they crash. In order to use petite_url_srv, we
must add it to Petite’s main supervisor, petite_sup. The following highlighted
lines inside the init function show the modifications that are needed:

webmachine/petite/day1/petite/src/petite_sup.erl
Web = {webmachine_mochiweb,

{webmachine_mochiweb, start, [WebConfig]},
permanent, 5000, worker, [mochiweb_socket_server]},

UrlServer = {petite_url_srv,➤

{petite_url_srv, start_link, []},➤

permanent, 5000, worker, []},➤

Processes = [Web, UrlServer],➤

{ok, { {one_for_one, 10, 10}, Processes} }.

Compile and start Petite, and let’s play with our new service at the Erlang
shell. Note that if you don’t see the 1> prompt after you start the app, hit Enter
to make one appear.

$./start.sh
«omitted output»
=PROGRESS REPORT==== 15-May-2013::21:10:14 ===

application: petite
started_at: nonode@nohost

1> whereis(petite_url_srv).
<0.92.0>
2> petite_url_srv:put_url("https://pragprog.com/").
{ok,"0"}
3> petite_url_srv:put_url("https://github.com/basho/webmachine").
{ok,"1"}
4> petite_url_srv:get_url("1").
{ok,"https://github.com/basho/webmachine"}
5> petite_url_srv:get_url("3K").
{error,not_found}

Our service works, and it is ready for use by any Webmachine resources we
create.

Redirection

You’ve already learned how to create Webmachine resources and how to use
resource functions like resource_exists and moved_permanently to redirect HTTP
requests. You also saw how to bind path tokens to atoms during dispatch
and retrieve them with wrq:path_info. All that remains is to combine these with
petite_url_srv, and Petite can shorten links.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_sup.erl
http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

First, create a rule in priv/dispatch.conf for your new resource:

webmachine/petite/day1/petite/priv/dispatch.conf
{[code], petite_fetch_resource, []}.

Then create the petite_fetch_resource module. Try modifying the redirection
example in Working with Resource Functions, on page ?, to use petite_url_srv
before peeking at the following implementation:

webmachine/petite/day1/petite/src/petite_fetch_resource.erl
-module(petite_fetch_resource).
-export([init/1,

to_html/2,
resource_exists/2,
previously_existed/2,
moved_permanently/2]).

-include_lib("webmachine/include/webmachine.hrl").

init([]) ->
{ok, ""}.

to_html(ReqData, State) ->
{"", ReqData, State}.

resource_exists(ReqData, State) ->
{false, ReqData, State}.

previously_existed(ReqData, State) ->
Code = wrq:path_info(code, ReqData),
case petite_url_srv:get_url(Code) of

{ok, Url} ->
{true, ReqData, Url};

{error, not_found} ->
{false, ReqData, State}

end.

moved_permanently(ReqData, State) ->
{{true, State}, ReqData, State}.

Recompile Petite and add some links at the Erlang shell as before. Once it
has shortened a few links, you can test the resource:

$ curl -i http://localhost:8000/1
HTTP/1.1 301 Moved Permanently
Server: MochiWeb/1.1 WebMachine/1.9.2
Location: https://github.com/basho/webmachine
Date: Thu, 16 May 2013 03:29:09 GMT
Content-Type: text/html
Content-Length: 0

• Click HERE to purchase this book now. discuss

Day 2: Building Apps • 9

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_fetch_resource.erl
http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

Our link shortener is working but is still short a few features. We need an
HTTP API to shorten new links. For that, we’ll create a new resource,
petite_shorten_resource.

Shortening API

The API to shorten a link is simple. HTTP POST requests will include form data
with a url field set to the link to shorten. Petite will return the shortened link
as text in the response.

Let’s think about the first questions Webmachine asks our resource and how
our resource should answer them. First, we’ll need to answer allowed_methods
by indicating support for HTTP POST. Next, since our response will be text,
the resource must respond appropriately to content_types_provided and provide
to_text. Webmachine requires we provide a body-generating function even in
the case of POSTs where it’s not strictly needed.

So far, these are resource functions that you’ve seen before when processing
HTTP GET requests. For HTTP POST requests, Webmachine first calls
post_is_create to determine if this request creates a new resource. If the answer
is false, the Webmachine state machine delegates processing to process_post.
If the answer is true, Webmachine follows a path of inquiry in the state
machine that we don’t have room to cover in this chapter. Since Petite is not
creating new resources in this API call, it will follow the former path.

process_post must parse the form data in the request, shorten the link, and
then generate a suitable response. Let’s look at how this is done:

webmachine/petite/day1/petite/src/petite_shorten_resource.erl
-module(petite_shorten_resource).
-export([init/1,

allowed_methods/2,
process_post/2,
content_types_provided/2,
to_text/2]).

-include_lib("webmachine/include/webmachine.hrl").

init([]) ->
{ok, undefined}.

allowed_methods(ReqData, State) ->
{['POST'], ReqData, State}.

content_types_provided(ReqData, State) ->
{[{"text/plain", to_text}], ReqData, State}.

process_post(ReqData, State) ->
Host = wrq:get_req_header("host", ReqData),

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_shorten_resource.erl
http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

Params = mochiweb_util:parse_qs(wrq:req_body(ReqData)),
Url = proplists:get_value("url", Params),
{ok, Code} = petite_url_srv:put_url(Url),
Shortened = "http://" ++ Host ++ "/" ++ Code ++ "\n",
{true, wrq:set_resp_body(Shortened, ReqData), State}.

to_text(ReqData, State) ->
{"", ReqData, State}.

wrq:get_req_header returns the value of a request header. Here it’s used to retrieve
the host and port the client is connected to so that we can use that information
to build the final shortened link.

mochiweb_util:parse_qs is a function that parses query strings or form data. This
is provided by MochiWeb, which is the HTTP processing library that Webma-
chine—and most other Erlang web libraries—are built on top of. We have
provided it wrq:req_body(ReqData) as input, which is the extracted body of the
incoming request.

mochiweb_util:parse_qs returns an Erlang property list, and process_post grabs the
url property, sends it to the internal shortening service, and then builds a
new, shortened link.

Finally, wrq:set_resp_body is used to set the body of the response to the shortened
link. Since data in Erlang is immutable, wrq:set_resp_body returns an altered
version of the ReqData structure that is passed along. Returning true from
process_post indicates successful processing.

Petite will also need a new dispatch rule for this resource. Put this rule before
the petite_fetch_resource rule:

webmachine/petite/day1/petite/priv/dispatch.conf
{["shorten"], petite_shorten_resource, []}.

You can now rebuild Petite and test it out:

$ curl -i -X POST http://localhost:8000/shorten \
> --data 'url=https%3A%2F%2Fpragprog.com%2F'
HTTP/1.1 200 OK
Server: MochiWeb/1.1 WebMachine/1.9.2
Date: Fri, 17 May 2013 04:56:25 GMT
Content-Type: text/plain
Content-Length: 24

http://localhost:8000/0

$ curl -i http://localhost:8000/0
HTTP/1.1 301 Moved Permanently
Server: MochiWeb/1.1 WebMachine/1.9.2

• Click HERE to purchase this book now. discuss

Day 2: Building Apps • 11

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/priv/dispatch.conf
http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

Location: https://pragprog.com/
Date: Fri, 17 May 2013 04:57:03 GMT
Content-Type: text/html
Content-Length: 0

Petite can now shorten long links and redirect shortened links to their original
URLs. Developers have written link shorteners in many languages and
frameworks, but it’s hard to imagine a simpler implementation than this
Webmachine version. By modeling HTTP as a state machine and separating
decision logic from simple answers, Webmachine has made dealing with
redirection almost as simple as “Hello, World.”

Even with just this basic functionality, it could serve as an internal shortening
service for your own web applications. Of course, you’d probably want to
persist the lookup table in a production version.

While Petite is working, it doesn’t yet have any front end for human users of
the service. Let’s look at how Webmachine handles front-end tasks so we can
remedy this situation.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7web
http://forums.pragprog.com/forums/7web

