
Extracted from:

The RSpec Book
Behaviour-Driven Development

with RSpec, Cucumber, and Friends

This PDF file contains pages extracted from The RSpec Book, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Chapter 20

Cucumber with Rails
Cucumber supports collaboration between project stakeholders and

application developers, with the goal of developing a common under-

standing of requirements and providing a backdrop for discussion. The

result of that collaboration is a set of plain-text descriptions of features

and automated scenarios that application code must pass to be con-

sidered done. Once passing, the scenarios serve as regression tests as

development continues.

As with any BDD project, we use Cucumber in a Rails project to de-

scribe application-level behavior. In this chapter, we’ll look at how Cu-

cumber integrates with Rails, exploring a variety of approaches to set-

ting up context, triggering events, and specifying expected outcomes as

we describe the features of our web application.

20.1 Step Definition Styles

Step definitions connect the natural-language steps in a plain-text fea-

ture file to Ruby code that interacts directly with the application. Since

Cucumber helps us describe behavior in business terms, the steps

shouldn’t express technical details. Given I’m logged in as an administra-

tor could apply to a CLI, client-side GUI, or web-based application. It’s

within the step definitions that the rubber meets the road and code is

created to interact with the application.



STEP DEFINITION STYLES 293

Simulated Browser

Automated Browser

Direct Model Access

Fast

Slow

Isolated

Integrated

Figure 20.1: Comparing step definition styles

When building step definitions for a Rails application, we typically deal

with three step definition styles for interacting with a web-based system

in order to specify its behavior:

• Automated Browser: Access the entire Rails MVC stack in a real

web browser by driving interactions with the Webrat API and its

support for piggybacking on Selenium. This style is fully integrated

but is the slowest to run and can be challenging to maintain.

• Simulated Browser: Access the entire MVC stack using Webrat,

a DSL for interacting with web applications. This style provides a

reliable level of integration while remaining fast enough for general

use, but it doesn’t exercise JavaScript.

• Direct Model Access: Access ActiveRecord models directly, bypass-

ing routing, controllers, and views. This is the fastest but least

integrated style.

When writing Cucumber scenarios, integration and speed are opposing

forces, as illustrated in Figure 20.1. Fast is better than slow, of course,

but integrated is better than isolated when we’re looking for confidence

that an app will work in the hands of users once it is shipped. So,

what’s the best approach to take?

Recommendations

We recommend using Simulated Browser with Webrat for Whens and

Thens. This helps drive out the pieces that a user will interact with, pro-

viding confidence that the component parts are working well together

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/achbd


DIRECT MODEL ACCESS 294

but still produces a suite that can be executed relatively quickly and

without depending on a real web browser.

We generally recommend using direct model access in Givens, but there

are a few exceptions. For anything that needs to set up browser session

state, such as logging in, you should use Simulated Browser.

If there is any JavaScript or Ajax, add scenarios that use the Automated

Browser approach in their Whens and Thens for the happy path and

critical less common paths. The added value we get from doing this is

exercising client-side code, so when no client code is necessary, there

is no reason to use the browser.

Edge Cases

For features that produce many edge cases, it can be useful to drive

a few through the Rails stack and the rest using just Direct Model

Access for everything. This may seem more like a unit test, but keep in

mind that scenarios are about communication. We want to make sure

that we’re writing the right code. If the customer asks for specific error

messages depending on a variety of error conditions, then it’s OK to go

right to the model if that’s the source of the message, as long as the

relevant slice of the full stack is getting sufficient coverage from other

scenarios.

In this chapter, we’ll start with the simplest style, Direct Model Access,

and walk through implementing a feature. Then we’ll explore using

Webrat for the Simulated Browser style in Chapter 21, Simulating the

Browser with Webrat, on page 300 and Automated Browser in Chap-

ter 22, Automating the Browser with Webrat and Selenium, on page 322.

20.2 Direct Model Access

Direct Model Access (DMA) step definitions execute quickly, but that

speed and isolation comes at a price. They don’t provide much assur-

ance that the application works, and they are unlikely to catch bugs

beyond those that should be caught by granular RSpec code examples

that we’ll be writing in a few chapters.

They do, however, facilitate conversation between the customer and

developers and will catch regressions if the logic inside the models is

broken in the future. In this way, DMA step definitions are useful for

exercising fine-grained behaviors of a system, when driving all of them

through the full stack would be too cumbersome.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/achbd


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
The RSpec Book’s Home Page

http://pragprog.com/titles/achbd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/achbd.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/achbd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/achbd
www.pragprog.com/catalog



