
Extracted from:

The RSpec Book
Behaviour-Driven Development

with RSpec, Cucumber, and Friends

This PDF file contains pages extracted from The RSpec Book, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 5

Describing Code with RSpec
In the previous chapter, we introduced and used Cucumber to describe

the behavior of our Codebreaker game from the outside, at the appli-

cation level. We wrote step definitions for our first Cucumber feature

that will handle the steps in the scenario, and we left off with a failing

step: we’re expecting Game to send a message to our fake Output, but

its array of messages is empty.

In this chapter, we’re going to use RSpec to describe behavior at a much

more granular level: the expected behavior of instances of the Game

class.

5.1 Getting Started with RSpec

To get going, create a spec directory, with a subdirectory named code-

breaker. Now create a file named game_spec.rb in spec/codebreaker/. As

we progress, we’ll maintain a parallel structure like this in which each

source file (for example, lib/codebreaker/game.rb) has a parallel spec file

(for example, spec/codebreaker/game_spec.rb). See the Joe Asks. . . on

the next page for more on this. Add the following to game_spec.rb:

Download cb/08/spec/codebreaker/game_spec.rb

Line 1 require 'spec_helper'
2

3 module Codebreaker
4 describe Game do

5 describe "#start" do

6 it "sends a welcome message"
7 it "prompts for the first guess"
8 end

9 end

10 end

http://media.pragprog.com/titles/achbd/code/cb/08/spec/codebreaker/game_spec.rb

GETTING STARTED WITH RSPEC 66

Joe Asks. . .

Shouldn’t We Avoid a One-to-One Mapping?

Perhaps you’ve heard that a one-to-one mapping between
objects and their specs is a BDD no-no. There is some truth to
this, but the devil is in the details.

We want to avoid a strict adherence to a structure in which
every object has a single example group and every method
has a single code example. That sort of structure leads to
long examples that take an object through many phases, set-
ting expectations at several stopping points in each example.
Examples like these are difficult to write to begin with and much
more difficult to understand and debug later.

A one-to-one mapping of spec-file to application-code-file,
however, is not only perfectly fine but actually beneficial. It
makes it easier to understand where to find the specs for code
you might be looking at. It also makes it easier for tools to
automate shortcuts like the one in the RSpec TextMate bun-
dle, which switches between spec-file and application-code-
file with Ctrl+Shift+Down.

The first two statements are standard Ruby. We require a file named

spec_helper.rb on line 1. We’ll actually store that file in the spec directory,

which RSpec adds to the global $LOAD_PATH. More on that in a minute.

The second statement declares a Ruby module named Codebreaker.

This isn’t necessary in order to run the specs, but it provides some con-

veniences. For example, we don’t have to fully qualify Game on line 4.

The describe() method hooks into RSpec’s API and returns a subclass

of RSpec::Core::ExampleGroup. As its name suggests, this is a group of

examples of the expected behavior of an object. If you’re accustomed

to xUnit tools like Test::Unit, you can think of an ExampleGroup as being

akin to a TestCase.

The it() method creates an example. Technically, it’s an instance of the

ExampleGroup returned by describe(), but you really don’t need to worry

about that at this point. We’ll get into the details of the underlying

framework in Chapter 12, Code Examples, on page 152.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/achbd

GETTING STARTED WITH RSPEC 67

Connect the Specs to the Code

Before we can run this, we need to add the spec_helper.rb required on

line 1. Create that now, and add the following:

Download cb/08/spec/spec_helper.rb

require 'codebreaker'

Similar to what we did with Cucumber’s env.rb in the previous chap-

ter, spec/codebreaker/game_spec.rb requires spec/spec_helper.rb, which

requires lib/codebreaker.rb, which, in turn, requires lib/codebreaker/

game.rb.

Open a shell and cd to the codebreaker project root directory, and run

the game_spec.rb file with the rspec command,1 like this:

rspec spec/codebreaker/game_spec.rb --format doc

You should see output similar to this:

Codebreaker::Game

#start

sends a welcome message (PENDING: Not Yet Implemented)

prompts for the first guess (PENDING: Not Yet Implemented)

Pending:

Codebreaker::Game#start sends a welcome message

Not Yet Implemented

./spec/codebreaker/game_spec.rb:6

Codebreaker::Game#start prompts for the first guess

Not Yet Implemented

./spec/codebreaker/game_spec.rb:7

The --format doc option tells RSpec to format the output using the same

nesting we see in the nested describe blocks in the file. We see Code-

breaker::Game on the first line because we wrapped describe Game do

inside the Codebreaker module.

The second line shows the string we passed to describe(), and the third

and fourth lines show the strings we passed to it().

“PENDING: Not Yet Implemented” tells us that we have to implement

those examples, which we do by passing a block to the it() method.

Without the block, the example is considered pending.

1. The rspec command is installed when you install the rspec gem.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/achbd/code/cb/08/spec/spec_helper.rb
http://www.pragprog.com/titles/achbd

RED: START WITH A FAILING CODE EXAMPLE 68

After RSpec outputs all the strings we passed to describe() and it(), it

lists all the pending examples and their locations. This is followed by a

summary that tells us how many examples were run, how many failed,

and how many are pending.

5.2 Red: Start with a Failing Code Example

In game_spec.rb, we want to do what we’ve done in the feature: specify

that when we start the game, it sends the right messages to the output.

Start by modifying game_spec.rb as follows:

Download cb/09/spec/codebreaker/game_spec.rb

require 'spec_helper'

module Codebreaker

describe Game do

describe "#start" do

it "sends a welcome message" do

output = double('output')

game = Game.new(output)

output.should_receive(:puts).with('Welcome to Codebreaker!')

game.start

end

it "prompts for the first guess"

end

end

end

Just as we did in the scenario, we want a test double to stand in

for the real STDOUT. Instead of rolling our own as we did in the sce-

nario, however, we’re using RSpec’s dynamic test double framework,

RSpec::Mocks,2 to create a dynamic test double on the first line of the

example.

Next, we create a Game object, passing it the test double output we

created on the previous line. These first two lines are the givens in this

example.

The next line sets up a message expectation: an expectation that the

output object should receive the puts message with the string “Welcome

2. See Chapter 14, RSpec::Mocks, on page 193 for more about RSpec::Mocks.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/achbd/code/cb/09/spec/codebreaker/game_spec.rb
http://www.pragprog.com/titles/achbd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
The RSpec Book’s Home Page

http://pragprog.com/titles/achbd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/achbd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/achbd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/achbd
www.pragprog.com/catalog

