
Extracted from:

iOS SDK Development

This PDF file contains pages extracted from iOS SDK Development, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

iOS SDK Development

Chris Adamson
Bill Dudney

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-94-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2012

http://pragprog.com

3.1 Encapsulating Concurrent Code with Blocks

As it stands right now, our Twitter app lets us compose a tweet, view our
Twitter page, and operate in multiple languages. But when we compose a
tweet and click Send, nothing happens. We have to manually click the “Show
my tweets” button to see if the tweet went out. Surely we can improve that
behavior.

If we take a look at the SLComposeViewController in the documentation, we find a
property called completionHandler, described as “the handler to call when the
user is done composing a post.” So that’s good: we could use this to reload
the web view once the tweet has been sent. Notice that, like the event handlers
for the buttons, this is an asynchronous concern: we are providing code that
gets called only when an unpredictable user-interface event demands it.

Let’s get ready by doing a little refactoring. We will want to reload the web
view either in response to a user tapping the reload button or when he or she
finishes composing a tweet. That calls for moving the reload logic into its own
method, reloadTweets, which can then be called from handleShowMyTweetsTapped:
and from our completion handler.

Prior to Xcode 4.4, we needed to declare the method signature prior to any
calls that actually use it, and this is still a useful practice for backward
compatibility. We could declare the method in the header file, but that
exposes it publicly, and it’s really more of an implementation detail. What we
need is a C-style forward declaration in the .m file, but Objective-C doesn’t
support them. What we use instead is a class extension, which looks like a
second @interface declaration but goes inside the implementation file. In
PRPViewController.m, an empty class extension has been stubbed out for us; edit
it to look like this:

Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
@interface PRPViewController()
-(void) reloadTweets;
@end

This extends the previous declaration of the PRPViewController interface, the one
in the .h file, by adding another method declaration, reloadTweets. This method
can be called anywhere in the .m file, but it isn’t exposed to outsiders.

Speaking of exposure to other classes, there’s no good reason that the twitter-
WebView should be publicly visible, and we certainly wouldn’t want a caller to
be able to reassign it to an object other than the one we created in our nib.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios/code/Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
http://pragprog.com/titles/adios
http://forums.pragprog.com/forums/adios

Fortunately, class extensions can also contain property declarations. So cut
the @property line from the PRPViewController.h header file, and paste it into the
.m file’s class extension, which should now look like this:

Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
@interface PRPViewController()
-(void) reloadTweets;
@property (nonatomic, strong) IBOutlet UIWebView *twitterWebView;
@end

Now that we’ve hidden the property, let’s get back to our original refactoring.
Go to the bottom of the file and refactor the event handler to call reloadTweets:

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios/code/Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
http://pragprog.com/titles/adios
http://forums.pragprog.com/forums/adios

Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
-(IBAction) handleShowMyTweetsTapped: (id) sender {

[self reloadTweets];
}

-(void) reloadTweets {
[self.twitterWebView loadRequest:
[NSURLRequest requestWithURL:
[NSURL URLWithString:@"http://www.twitter.com/yourhandle"]]];

}

Categories

Class extensions can be seen as a special case of categories, one of Objective-C’s most
clever features. Categories allow us to add methods to any class, even classes we
don’t own, like those in the iOS SDK frameworks.

For example, consider that NSArray has a lastObject method, but it doesn’t have one to
get the first object. [myArray objectAtIndex:0] isn’t equivalent, because it throws an
exception for empty arrays. With a category, we could write a safe firstObject method
by declaring a category of new methods on NSArray like this:

@interface NSArray (MySafeMethods)
-(id) firstObject;
@end

By convention, this header would go in a file called NSArray+MySafeMethods.h, and the
implementation would go in a corresponding .m. The implementation can’t add instance
variables to the class, so there are limits on what we can do in a category.

Unlike a category, a class extension can provide instance variables in that it supports
property declarations. In fact, now that the Xcode compiler can find method calls
without the forward declaration that a class extension provides, the private declaration
of properties is probably the most significant use of class extensions.

Now we just need to call reloadTweets when the user sends the tweet, which we
get from this completionHandler. The docs tell us that the handler is of type
SLComposeViewControllerCompletionHandler, so we follow the link to that typedef and
it looks like this:

typedef void (^SLComposeViewControllerCompletionHandler)
(SLComposeViewControllerResult result);

What...the...heck?

The carat character tells us we’re not in Kansas anymore. This indicates a
new C-language extension introduced by Apple called a block. A block is an
object that contains both executable code and program state. The idea is

• Click HERE to purchase this book now. discuss

Encapsulating Concurrent Code with Blocks • 7

http://media.pragprog.com/titles/adios/code/Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
http://pragprog.com/titles/adios
http://forums.pragprog.com/forums/adios

much like that of a closure: the code inside the block receives a copy of the
variables that were in scope when the block was created.

For this typedef, the void tells us that the block does not return a value, and it
accepts a SLComposeViewControllerResult called result as a parameter. The result is
an enum with values that tells us whether the SLComposeViewController was dis-
missed with the Cancel or the Done button.

So to reload the web view, we need to create a block that checks to see that
the result is SLComposeViewControllerResultDone, and if so, calls reloadTweets. We create
a block with the carat (^) character, like the documentation did. We rewrite
handleTweetButtonTapped: as follows:

Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
-(IBAction) handleTweetButtonTapped: (id) sender {Line 1

if ([SLComposeViewController isAvailableForServiceType: SLServiceTypeTwitter]) {-

SLComposeViewController *tweetVC =-

[SLComposeViewController composeViewControllerForServiceType:-

SLServiceTypeTwitter];5

[tweetVC setInitialText: NSLocalizedString (-

@"I just finished the first project in iOS SDK Development. #pragsios",-

nil)];-

tweetVC.completionHandler = ^(SLComposeViewControllerResult result) {-

if (result == SLComposeViewControllerResultDone) {10

[self dismissViewControllerAnimated:YES completion:NULL];-

[self reloadTweets];-

}-

};-

[self presentViewController:tweetVC animated:YES completion:NULL];15

}-

}-

The new part is lines 9 through 14. We create a block with the ^ and the
parameter list from the documentation and then enclose our code in curly
braces. On line 10, we test the value of the result parameter. If it’s SLCompose-
ViewControllerResultDone, then we know the tweet was sent (and not cancelled)
and we get to work. We start with a call to [self dismissViewControllerAnimated: YES
completion:NULL] on line 11, which takes a view controller to dismiss (self) and a
completion block to execute when the dismissal animation completes (the
empty block NULL means we do nothing special).

We didn’t have to explicitly dismiss the SLComposeViewController before we added
the custom completionHandler, but now that we’re using a SLComposeViewController-
CompletionHandler, its documentation tells us that “the completion handler is
called while the SLComposeViewController is still visible and it is responsible for
dismissing the view controller” (emphasis ours).

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios/code/Concurrency/PRPFirstProjectTweeter04/PRPFirstProjectTweeter/PRPViewController.m
http://pragprog.com/titles/adios
http://forums.pragprog.com/forums/adios

To fill in the web view, we call [self reloadTweets] on line 12. The interesting part
of this line is where we get self from, since it isn’t passed into the block as a
parameter. It’s a variable in scope at the time of the block’s creation, so the
code in our block can call it directly. For that matter, our block could also
refer to the sender parameter that was sent as a parameter to handleTweetButton-
Tapped:, because that’s another variable that’s in scope when the block is
created.

Notice the odd syntax on line 14 (};). The closing curly brace ends the block
that started on line 9, and the semicolon ends the assignment of this block
to the property tweetVC.completionHandler. This may be harder to read than it is
to write; syntax-aware code completion in Xcode helps a lot with blocks.

Run this and send a tweet. Shortly after Send is tapped, the Social framework
sends the tweet and then executes the block, which automatically reloads
the web view without any further action by the user.

The iOS SDK uses blocks in several interesting ways. The pattern seen here,
the completion handler, is a clean way of determining what should happen
when a long-running action like network access or media I/O completes. We
actually had an option to use blocks way back in the first version of this
project: the third argument of presentViewController:animated:completion: specifies a
completion handler block to execute once a modal view controller’s view has
been shown. We’ve used NULL because we don’t need to do anything special
once the tweet composer appears. Foundation’s collection classes also make
substantial use of blocks. NSArray has a method enumerateObjectsUsingBlock: that
runs a block against every member of an array, and NSDictionary has similar
methods that run a block on every key-value pair. We can also use a block
as the sorting criteria for the contents of an NSArray and the keys of an
NSDictionary.

• Click HERE to purchase this book now. discuss

Encapsulating Concurrent Code with Blocks • 9

http://pragprog.com/titles/adios
http://forums.pragprog.com/forums/adios

