
Extracted from:

iOS 8 SDK Development
Creating iPhone and iPad Apps with Swift

This PDF file contains pages extracted from iOS 8 SDK Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

iOS 8 SDK Development
Creating iPhone and iPad Apps with Swift

Chris Adamson
Janie Clayton

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-64-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015

https://pragprog.com
rights@pragprog.com

Do-It-Yourself Concurrency
Actually, our app isn’t as fast as we might like. Try scrolling the table. The
scrolling is still choppy. This has been the case since way back in Custom
Table Cells, on page ?, where we started fetching the avatar images from
their URLs. So let’s think about what’s causing the problem and whether we
can fix it.

When the table asks us for a cell—in tableView(cellForRowAtIndexPath:)—we can
easily set all the labels with strings from the ParsedTweet, but what we have for
the avatar image is an NSURL. So we stop and load the data for that URL, make
a new UIImage from it, and assign that to our custom cell’s UIImageView. This
has to happen for each cell. Moreover, we can only work on one cell at a time.
As a new cell comes into view, we have to wait to download the image data,
and only when we have it can we continue on to the next cell. It makes
swiping quickly through the table impossible.

So, we’re blocking the UIKit queue on a slow network access. “Hey, wait a
minute,” we say, “isn’t that exactly what concurrency is supposed to fix? And
isn’t it exactly why the Social framework does the Twitter API call on a different
queue?” Exactly. And that means to fix our problem, we should do what Apple
does: get our network stuff off the main queue.

They Don’t Call It “Blocking” the Main Queue for Nothing
Lest anyone think the issue of keeping long-running tasks off the main queue is an academic
problem…well, do we have a story for you.

Years ago, one of the authors of this book was working at a company with a product that worked
with video. For a demo, we had to show that the application could copy this video to an analog
video tape recorder (VTR). Our solution was to connect the output of the video card to the VTR,
and to use an RS-232 cable to send “record” and “stop” commands to the VTR. It seemed easy:
to copy the video, we start the VTR recording and play the video from the PC, and then stop the
VTR when the video’s done. Easy peasy.

Except that the guy who wrote this didn’t know how threads work in Java, which is what the
application was written in. And desktop Java works almost exactly like UIKit: there’s a main thread
with an endless loop that looks for events like keypresses and mouse clicks, sends them to any
code that handles the event, and repaints the window.

So when the user clicked the Record button, the code to play the video and start recording on
the VTR was called…on the main thread. And that code effectively said “Wait here until the video
is done,” which meant that the window didn’t update and no further events were processed
until the video was done playing.

Some of these videos were 15 minutes long. The application couldn’t do any repainting or event-
handling during this time, so if you covered up the window and then foregrounded it, it wouldn’t

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

repaint. On Windows, dragging the mouse over the window would leave a trail of unerased
mouse crud. Clicking a button did nothing. It was a disaster.

And this is pretty much where your author got to learn about threads, and had to completely
rewrite this part of the program so that all of the video stuff happened on another thread, freeing
up the main thread to immediately get back to work processing events and repainting, and then
having the video thread put UI work back on the main thread only when ready.

And if you’re still not convinced? Try plopping an NSThread.sleepUntilDate(NSDate(timeIntervalSin-
ceNow:900.0)) as the first line of one of the button handlers. This will block the main queue for
900 seconds, or 15 minutes, during which time the button won’t return to its untapped state,
rotation events will be ignored, and the user will basically be blocked out of the app. That’s what
we’re trying to avoid!

Moving Work Off the Main Queue
When tableView(cellForRowAtIndexPath:) needs an avatar, it does a slow NSURL load,
makes an image from it, and sets it on the UIImageView. Only the last of these
steps needs to be on the main queue, and the first shouldn’t be. So we need
a recipe to move work off the main queue.

dispatch_async() comes to our rescue again. Recall that it takes two parameters:
the queue to put work on, and a closure with the tasks we want performed.
What we need now is a different value for that first parameter, one that isn’t
the main queue, but just some other queue. For this, there’s the GCD function
dispatch_get_global_queue(), which takes a constant that indicates the priority of
the system-provided queue we want. We’re not picky, so we can use
QOS_CLASS_DEFAULT to let GCD pick an ordinary background queue for us.

If you’re an iOS 7 programmer, you might be wondering about that queue
name. Well, iOS 8 introduces new “quality of service” constants for GCD queue
priorities, which are meant to better express programmer intent. Unfortunate-
ly, they’re not currently searchable in the Xcode documentation viewer, and
are only visible in a C header file. The following table shows the new constants,
and their older equivalents, which we’d have to use for code running on iOS
7 or earlier.

iOS 7 EquivalentiOS 8 QOS Constant

DISPATCH_QUEUE_PRIORITY_HIGHQOS_CLASS_USER_INITIATED
DISPATCH_QUEUE_PRIORITY_DEFAULTQOS_CLASS_DEFAULT
DISPATCH_QUEUE_PRIORITY_LOWQOS_CLASS_UTILITY
DISPATCH_QUEUE_PRIORITY_BACKGROUNDQOS_CLASS_BACKGROUND

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

Anyway, now we have the pieces we need. In tableView(cellForRowAtIndexPath:), find
the if parsedTweet.userAvatarURL != nil block that sets the image, and replace it with
the following version:

Concurrency/PragmaticTweets-7-2/PragmaticTweets/ViewController.swift
dispatch_async(dispatch_get_global_queue(Line 1

QOS_CLASS_DEFAULT, 0),-

{-

if let imageData = NSData (contentsOfURL:-

parsedTweet.userAvatarURL!) {5

let avatarImage = UIImage(data: imageData)-

dispatch_async(dispatch_get_main_queue(),-

{-

cell.avatarImageView.image = avatarImage-

})10

}-

})-

Lines 1–12 are one big dispatch_async()
call. The difference here is that we
want to get work off the main queue,
so on lines 1–2, we use the GCD
function dispatch_get_global_queue() with
the constant QOS_CLASS_DEFAULT to let
GCD pick an ordinary background
queue for us. That background queue
gets the closure that runs from lines
3–12. This closure contains the “get a
UIImage from an NSURL” logic from
before, and then sets that image on
the UIImageView. But since updating the
image view has to happen on the main
queue, we use a second dispatch_async()
(lines 7–10) to wrap the UIKit work
with a closure and put it back on the
main queue.

And it’s great! Now our table scrolls
nice and fast, not blocking on the
image loading at all!

There’s just one more problem. Look at the figure. Every single one of the
images is wrong: Chris is Janie, Janie is Chris, and iOS Recipes co-author
Matt Drance is Janie, too.

• Click HERE to purchase this book now. discuss

Do-It-Yourself Concurrency • 7

http://media.pragprog.com/titles/adios2/code/Concurrency/PragmaticTweets-7-2/PragmaticTweets/ViewController.swift
http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

Race Conditions
What’s happened? A race condition, actually. When a cell goes offscreen and
is queued for reuse, it will eventually get dequeued and filled with new data.
But the closure that fills in the image doesn’t know that. In this case, there
was some cell for one of Matt’s tweets that went off screen, dequeued, and
repopulated with one of Janie’s tweets (for the first row in the figure), but
then the closure finished and filled in the image with Matt’s picture. This
doesn’t happen often—we had to request 200 tweets, plus simulate poor
network conditions to get the screenshot—but it is a bug, and if there’s any
way to make it happen in development, it’s for sure going to hit someone in
the real world.

The fix is to figure out when a closure has taken too long. How do we know
that? Well, if the problem is that the cell has already filled in the contents
from a different tweet, we can look to see if the parsedTweet that the closure
started with has the same data that’s displayed by the cell now. So here’s the
new contents for the if parsedTweet.userAvatarURL != nil block:

Concurrency/PragmaticTweets-7-2/PragmaticTweets/ViewController.swift
cell.avatarImageView.image = nilLine 1

dispatch_async(dispatch_get_global_queue(-

QOS_CLASS_DEFAULT, 0),-

{-

if let imageData = NSData (contentsOfURL:5

parsedTweet.userAvatarURL!) {-

let avatarImage = UIImage(data: imageData)-

dispatch_async(dispatch_get_main_queue(),-

{-

if cell.userNameLabel.text == parsedTweet.userName {10

cell.avatarImageView.image = avatarImage-

} else {-

println ("oops, wrong cell, never mind")-

}-

})15

}-

})-

We start by clearing out the possibly wrong image, on line 1. The big change
is inside the closure that runs on the main queue (lines 8–15): it looks to see
if the text already set on the name label matches the userName of the ParsedTweet
that the closure captured at the moment the closure was created. If it does,
then this image belongs with this cell. If not, then the cell the closure was
downloading an image for has already been reused and no longer matches,
so the closure can just bail.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios2/code/Concurrency/PragmaticTweets-7-2/PragmaticTweets/ViewController.swift
http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

The else block is optional of course, but it’s interesting to play with our network
conditions and see how often the log message pops up in good conditions
versus bad (for a way to reproduce this, see the sidebar on page 10). Suffice
to say that if we hadn’t fixed this, our Edge and 3G users would be really
unhappy.

Now the race condition is fixed. If the image
data comes in too late to use, we just don’t
use it. And we’ve once again been reminded
of the promise and the hazards of working
asynchronously. The figure shows our snappy
and accurate app:

So we have a recipe for getting work onto and
off of the main thread: just call dispatch_async(),
with the work to be done as a closure. For the
queue, we use dispatch_get_main_queue() to put
work on the main queue, or dispatch_get_glob-
al_queue() to get a system queue that can get
our work off the main queue. Either way, we’re
exploiting concurrency, the ability of the sys-
tem to do many things at once, and now we’re
smarter about how to let the main queue keep
doing its event-dispatching and repainting thing, while we do ours.

• Click HERE to purchase this book now. discuss

Do-It-Yourself Concurrency • 9

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

Joe asks:

Can I Slow Down the Simulator Long Enough to
See the Cells Get the Wrong Image?

If your Internet connection is really good, you may load the image data too fast to see
the wrong-cells bug. This shows off one disadvantage of working with the simulator:
its performance is unrealistically good, particularly for networking tasks. A Mac Pro
with Gigabit Ethernet is going to get a web service response a lot more quickly than
an iPhone with one bar of 3G coverage out in the woods somewhere.

Fortunately, a Mac can simulate lousy network conditions for this kind of testing.
From the Xcode menu, select Open Developer Tool→More Developer Tools to be taken
to Apple’s Xcode downloads page. After asking for a developer ID and password, the
page shows optional downloads for Xcode. Look for the latest version of the Hardware
IO Tools For Xcode, download it, and double-click the Network Link Conditioner.prefPane to
install it.

This adds a pane to the Mac’s System Preferences called Network Link Conditioner,
which adjusts the performance of the Mac’s current networking device (Ethernet,
AirPort, etc.) to resemble real-world conditions an iOS device might face, from Wi-Fi
with good connectivity to the outdated Edge network experiencing packet loss.

Keep in mind, however, that the Network Link Conditioner degrades all network
traffic on the Mac, not just the iOS Simulator application. So if we forget to turn it
off when we’re done testing, it will make everything we do seem like we’re getting one
bar in the middle of nowhere.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

