
Extracted from:

iOS 8 SDK Development
Creating iPhone and iPad Apps with Swift

This PDF file contains pages extracted from iOS 8 SDK Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

iOS 8 SDK Development
Creating iPhone and iPad Apps with Swift

Chris Adamson
Janie Clayton

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-64-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015

https://pragprog.com
rights@pragprog.com

Strings
The other major framework we import by default in iOS projects is Foundation,
which provides fundamental data types for common concerns like dates and
times, regular expressions, file I/O, and so on. We’ve already used two
classes from Foundation: the NSURL and NSURLRequest that we used to populate
the UIWebView.

Foundation also provides strings (as the NSString class) and collections (NSArray
and NSDictionary), and in Objective-C, we would work with these as we would
with any other class. However, in Swift, the language has taken more
responsibility for strings and collections, and we can do a lot of common tasks
without having to explicitly call methods on object instances. This makes
Swift a lot easier to just get in and use.

Let’s start with the String. We can create a string as we do with any other
variable or constant, assigning a value with var or let. The value to assign on
is enclosed in straight quotes and can include any Unicode characters.

let myConstantString = "iPhone"
var myVariableString = "iPad"

We can also build strings by using the concatenation operator, +:

var shoppingList = "I need to buy an " +
myConstantString + " and an " + myVariableString

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

Strings defined with var are mutable, so we can append to them:

shoppingList += ", and maybe an Apple TV"

It’s also possible to build up strings by performing in-line evaluations of
expressions in the form \(expression) , like this:

var shoppingListCountString = "This list has \(1 + 1 + 1) items"

One rather surprising fact about Swift strings is that that they are pass-by
value, rather than pass-by reference. This means that a method that takes a
string as an argument gets the contents of the string, rather than a reference
to a string object. It’s a subtle difference but it means, among other things,
that a function or method can count on the value of a string not being changed
by code running at the same time and with a shared reference to the string
object. In Objective-C, developers typically copied strings they received from
callers just to prevent such problems. It’s another way that Swift eliminates
entire categories of subtle bugs.

Collections
As with strings, Swift moves support for the most common collections
directly into the language, which makes them significantly easier to work
with than the Objective-C approach of calling methods on objects.

Arrays
Swift provides direct language support for two essential collections: arrays
and dictionaries. Arrays, as in most languages, are ordered lists of objects.

var musicGenres = ["Pop", "Rock", "Jazz", "Hip-hop", "Classical"]

Because of type inference, Swift knows this is an array of Strings. We could
make that explicit by making the declaration var musicGenres: [String].

We can access array members by a zero-based index, inside square braces.
We can also get a sub-array by using the range operator, where ..< includes
the first index but not the second, and ... includes both the first and last index.

let pop = musicGenres[0]
let popRock = musicGenres[0..<2]
let popRockJazz = musicGenres [0...2]

If the array was declared with the var keyword, then it is mutable and we can
add to it with the append() method, or change values in-place.

musicGenres.append("J-Pop")
musicGenres[1] = "Rock and Roll"

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

Arrays also have several self-descriptive methods for mutating their contents,
such as insert(), removeAtIndex(), removeFirst(), and removeLast().

What do you suppose happens if we try to add something that isn’t a String
to musicGenres? The following produces a build error:

musicGenres += 2.99

Since the original contents of musicGenres were all strings, Swift inferred that
it was an array of Strings, effectively making the declaration var musicGenres:
Array<String>, where the type to the right of the colon explicitly declares what
musicGenres is: an Array of Strings. Since 2.99 is a Double, it can’t be added. If we
really needed to do something like this, we could instead use the special type
Any in our declaration, like this:

var musicGenres2 : Array<Any> = ["Pop", "Rock", "Jazz", "Hip-hop", "Classical"]
musicGenres2.append(2.99)

Any supports, well, pretty much anything: strings, numeric types, objects,
and so forth. If we know we’re dealing solely in objects—keeping in mind that
String and collections are not objects in Swift—then we could use the some-
what more restrictive type AnyObject.

Swift also allows us to declare an array with the more concise syntax [Any],
which is functionally identical to Array<Any>.

Dictionaries
Swift also provides dictionaries, which map from one object to another. These
are commonly used in “lookup”-style scenarios. As with arrays, we can create
a dictionary by assigning some values into it (by putting key-value pairs in
square braces like an array, each pair separated by commas), and let Swift
figure out the types.

var planetaryMass = [
"Mercury" : 3.301E+23,
"Venus" : 4.867E+24,
"Earth" : 5.972E+24,
"Mars" : 6.417E+23,
"Jupiter" : 1.899E+27,
"Saturn" : 5.685E+26,
"Uranus" : 8.682E+25,
"Neptune" : 1.024E+26,

]

In this example, Swift will infer the declaration var planetaryMass :Dictionary <String,
Double> (although we gave it help by using scientific notation for the large
numeric values, without which it might have inferred the value type to be Int).

• Click HERE to purchase this book now. discuss

Collections • 7

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

As with arrays, there’s a more compact way to write this declaration:
[String:Double], though for now we’ll use the more verbose form for clarity.

As with arrays, we use square braces to access members of the dictionary by
name. The simplest use of this syntax is to add a member to the dictionary.

planetaryMass["Pluto"] = 1.471E+22

Of course, Pluto isn’t a planet anymore, so this example is purely hypothetical.
Anyway, we can also use square braces to look up a value by its key…or can
we? Consider the following:

println ("Earth's mass is \(planetaryMass["Earth"]) kg")

This code won’t even compile. But why not? The answer is a little tricky…

Optionals
To see what the problem is when we fetch a dictionary member by name, let’s
imagine if we added the following line:

var mass = planetaryMass["Gallifrey"]

Considering that “Gallifrey” is a fictional planet (and was, for a time, erased
from history even within that fiction), it’s not in our dictionary, so there’s no
valid answer here. So what value should be returned for a value that doesn’t
exist? Double is a numeric type, not an object, so we can’t just have it be nil as
a means of saying “no object.” Can it be 0? No, 0 is a perfectly good value for
a floating-point number. So what do we do here?

Swift uses a concept called optionals which encapsulate both knowing whether
or not there is a value, and if so, what the value is. Dictionaries return
optionals, so planetaryMass can return nil when there is no value for a key.

We make a type into an optional by adding a ? character to the type. Then we
expose the optional to an if statement; if the optional has no value, this will
evaluate to false. So here’s a safe way to print a value from the dictionary:

let mass : Double? = planetaryMass["Earth"]
if mass != nil {

println ("Earth's mass is \(mass) kg")
} else {

println ("No such planet")
}

The only problem with this is that, well, optionals can be a little burdensome.
In this case, the println() output is

Earth's mass is Optional(5.972e+24) kg

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

Ick. The println() puts that “Optional” stuff around the value. How do we get
rid of it? Swift gives us an expedient way to work around cases like this: we
can try to assign an optional to its non-optional base type inside an if state-
ment, and the if evaluates to true or false based on whether the assignment
works:

if let unwrappedMass : Double = planetaryMass["Earth"] {
println ("Earth's mass is \(unwrappedMass) kg")

} else {
println ("No such planet")

}

This prints Earth's mass is 5.972e+24 kg, without the Optional(…) stuff, because
unwrappedMass is a real Double, and not a Double? (that is to say, a Double optional).

Converting an optional to its base type is called unwrapping. We can do this
carefully, as with the if let… construction. But that can be burdensome if we
have to nest a bunch of if statements, just to get at the underlying types of
some optional variables or properties.

Swift also provides the as operator for casting between classes, and as? for an
optional cast that may or may not succeed. So the following two if statements
are equally valid ways to unwrap an optional:

if let unwrappedMass : Double = planetaryMass["Earth"]
if let unwrappedMass = planetaryMass["Earth"] as? Double

For cases where we “just know” that the value isn’t nil, we can accelerate the
unwrapping with the ! operator. So in our earlier example of getting Earth’s
mass, we can unwrap the optional within the println(), without an if test, by
using the ! operator.

let optionalMass : Double? = planetaryMass["Earth"]
if optionalMass != nil {

println ("Earth's mass is \(optionalMass!) kg")
} else {

println ("No such planet")
}

This unwraps optionalMass within the println(), so we don’t get the Optional(…) junk
in our output.

Doing a fast unwrap is great, but the problem with the ! operator is that whole
part about assuming the optional isn’t nil. If we were to foolishly write the else
case like this:

println ("Failed to get planet's mass: \(optionalMass!)")

• Click HERE to purchase this book now. discuss

Optionals • 9

http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

then we would crash on the second line with unexpectedly found nil while unwrapping
an Optional value. So much for what we “just know,” huh?

We’ve actually seen the ! character much earlier in this chapter, back when
we dragged over a connection to create the twitterWebView property. When we
apply the ! to a type, it becomes an implicitly unwrapped optional, meaning
we can unwrap its value without the ! operator. In other words, we can just
refer to twitterWebView and not have to write twitterWebView! or a bunch of if let
unwrappedWebView : UIWebView = twitterWebView code every time we want to touch it.
The unwrapping is implicit, hence the name.

Cool, right? But since it’s still an optional, there is no guarantee that it even
has a value. So it’s inherently unsafe and should only be used when we
really know the variable or property will always have a value when we reference
it. Since Xcode is responsible for connecting our storyboard elements to our
code, it can confidently use the implicitly unwrapped optional instead of the
more burdensome optional type.

In fact, we’ll see this a lot in the iOS code we’re going to call. On http://devfo-
rums.apple.com, Apple’s engineers have explained that implicitly unwrapped
optionals are needed when bridging to old Objective-C code, where nil is always
a possible value for Objective-C types, and they couldn’t immediately audit
every method in all the frameworks to guarantee that a given parameter can
never be nil. Yet, on the other hand, if every parameter were a full-blown
optional, we’d be writing lots of defensive “if not nil” code. So, for now, it’s a
trade-off between safety and usability, and most of Apple’s methods currently
work with implicitly unwrapped optionals. That said, Apple engineers are
indeed auditing the iOS frameworks, and some implicitly unwrapped optional
parameters and return types are changing to either plain types or full-blown
optionals with each new release of Xcode. We can plan on this being an
ongoing process for a while.

Failable Initializers

Xcode 6.1 and iOS 8.1 introduce a new use of optionals, the failable initializer. These
are used for cases where we call an initializer and get nothing back.

We saw this earlier when we created an NSURL from a string. If the string is garbage,
the NSURL class now reserves the right to give us back nil, rather than a useless object.
With a failable initializer, the initializer returns NSURL?, which is an optional type. This
explains why we had to put a ! on the returned url object when we passed it to the
NSURLRequest initializer.

• 10

• Click HERE to purchase this book now. discuss

http://devforums.apple.com
http://devforums.apple.com
http://pragprog.com/titles/adios2
http://forums.pragprog.com/forums/adios2

