
Extracted from:

iOS 9 SDK Development
Creating iPhone and iPad Apps with Swift

This PDF file contains pages extracted from iOS 9 SDK Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

iOS 9 SDK Development
Creating iPhone and iPad Apps with Swift

Chris Adamson with Janie Clayton

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-132-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 5

Connecting the UI to Code
You’ve learned how to build user interfaces with storyboards and Interface
Builder, and, before that, you used playgrounds to learn the ins and outs of
the Swift programming language. But from where you stand right now, these
two things have nothing to do with each other: you can’t write code in a sto-
ryboard, and you can’t drag and customize buttons and labels in a playground.

Obviously, there has to be some way to bring your two skill sets together, so
you can bring a user interface to life and have your code do more than just
produce log messages.

This chapter will let you close the loop by bringing these two worlds together:
you’ll connect user interface to code, so buttons can react to taps and your
code can update what’s on the screen.

It’s all about connections.

Making Connections
So, how do we get the Send Tweet button tap to do something? After all, we’ve
been creating the user interface in the Main.storyboard file, but it doesn’t look
like there’s any place in this editor to start writing code.

In iOS, we use Interface Builder connections to tie the user interface to our
code. Using Xcode, we can create two kinds of connections:

• An outlet connects a variable or property in code to an object in a story-
board. This lets us read and write the object’s properties, like reading the
value of a slider or setting the initial contents of a text field.

• An action connects an event generated by a storyboard object to a method
in our code. This lets us respond to a button being tapped or a slider’s
value changing.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

What we need here is an action connecting the button tap in the UI to a
method in our code, which we’ll write in a little bit. To create either kind of
connection, we need to declare an IBOutlet or IBAction in our code, and then
create the connection with Interface Builder. Fortunately, IB makes this
pretty easy by giving us a way to combine the steps.

With the storyboard showing in the Editor area, go to the
toolbar and click the Assistant Editor button (it looks like
two linked circles). This brings up a side-by-side view with the storyboard on
the left and a source file on the right. If there’s not enough horizontal room
on the screen to see things clearly, use the toolbar to hide the Utility area.

The pane on the right has a jump bar at the top to show which file is in the
pane. After a pair of forward/back buttons, there’s a button that determines
how the file for this pane is selected: Manual, Automatic, Top Level Objects,
and so forth. Set this to Automatic and the contents of the file ViewController.swift
should appear in the right pane. We’ll have more to say about why ViewCon-
troller.swift is the file we need in the next few chapters, but for now, let’s take
the name at face value: this is the class that controls the view.

Xcode’s template prepopulates ViewController.swift with trivial implementations
of two methods: viewDidLoad() and didReceiveMemoryWarning(). We’ll be adding a new
method to this class.

Creating the action is pretty easy. Control-click on the button in Interface
Builder, and Control-drag a line over into the source code, anywhere between
the set of curly braces that begin with class ViewController : UIViewController and end
at the bottom of the file, and not within the curly braces of an existing method.
Don’t worry; a blue drop indicator and the tooltip “Insert Outlet, Action, or
Outlet Collection” will appear only when we mouse over a valid drop zone. A
good place to target is the line right before the final curly brace:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

When we release the mouse in the source file, a popover asks us for the details
needed to finish the method declaration. On the first line, change the Connec-
tion from Outlet to Action. This is important—for a button tap, we want a
connection that goes from UI to code, and that’s what an action is.

We need to give the method a name, so type handleTweetButtonTapped in the Name
field. Next, the Type field determines what kind of object will be passed to the
method as an argument identifying the source of the action. The default,
AnyObject, represents any kind of object and works well enough, but we can
save ourselves some typing later by switching it to UIButton so we know that
the object calling us is a button. For the Event and Arguments fields we can
take the default values. Click the Connect button to create the connection.

We’re done with the Assistant Editor. Click the Standard Editor button in the
toolbar to return to one-pane mode. Select ViewController.swift in the Navigator
area amd you’ll see that Xcode has stubbed out a method signature for us:

connecting/PragmaticTweets-5-1/PragmaticTweets/ViewController.swift
@IBAction func handleTweetButtonTapped(sender: UIButton) {
}

Xcode has also made a change to the storyboard, but it’s not as easy to see.
Switch to Main.storyboard and bring the Utility area back, if it’s hidden. Click on
the button to select it. Then, in the Utility toolbar, click the little circle with
the arrow (or press ED6) to bring up the Connections Inspector. This pane
shows all the connections for an object in Interface Builder: all the outlets
from code to the object, and all actions sent by the object into the code. In
this case, one connection appears in the Sent Events section, from Touch Up
Inside to View Controller handleTweetButtonTapped. This connection, shown
in the figure that follows, is editable here. If we wanted to disconnect it, we
could click the little “x” button, and then reconnect to a different IBAction
method by dragging from the circle on the right to the View Controller icon
in the scene.

• Click HERE to purchase this book now. discuss

Making Connections • 7

http://media.pragprog.com/titles/adios3/code/connecting/PragmaticTweets-5-1/PragmaticTweets/ViewController.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

Honestly, we don’t break and remake connections very often, but if a connec-
tion ever gets inadvertently broken (for example, by renaming the method in
the source file), looking in the Connections Inspector is a good approach for
diagnosing and fixing the problem.

Coding the Action
Now that we’ve added a button to our view and wired it up, we can run the
app again. The app now has the Send Tweet button, and we can even tap it,
but it doesn’t do anything. In fact, we don’t even know if we’ve made our
connections correctly. One thing we can do as a sanity check is to log a
message to make sure our code is really running. Once that’s verified, we can
move on to implementing our tweet functionality.

Logging
Back in Chapter 2, we learned about the NSLog() function for logging times-
tamped messages to the Xcode console. We can use that in our action to just
log a message every time the button is tapped, and thereby verify that the
connections are working. Select ViewController.swift in the File Navigator (D1) to
edit its source code and rewrite handleTweetButtonTapped() like this:

connecting/PragmaticTweets-5-1/PragmaticTweets/ViewController.swift
@IBAction func handleTweetButtonTapped(sender: UIButton) {

NSLog("handleTweetButtonTapped")
}

Run the app again, and tap the button. Back in Xcode, the Debug area
automatically appears at the bottom of the window once a log or error message
is generated, as seen in the following figure. Every time the button is tapped,
another line is written to the log and shown in the Debug area. If the Debug
area slides in but looks empty, check the two rightmost buttons at the bottom
of the Debug area, next to the trashcan icon; the left one enables a variables
view (populated only when the app is stopped on a breakpoint), and the right
(which we want to be visible) is the console view where log messages appear.
Another way to force the console view to appear is to press BDC.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios3/code/connecting/PragmaticTweets-5-1/PragmaticTweets/ViewController.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

So now we have a button that is connected to our code, enough to log a
message that indicates the button tap is being handled. The next step is to
add some tweeting!

Showing a Tweet Composer
To send a tweet, we need something in the iOS SDK to at least let us get out
to the network. As it turns out, iOS is far more generous than that. Bring up
the documentation viewer with the menu item Window > Documentation and
API Reference (BD0). In the search field, type social framework. Locate the result
for Social Framework Reference and choose that.

The Social framework lets apps connect to social networks like Twitter and
Facebook easily. There are just three classes listed, one of which is SLCompose-
ViewController. Click that, and read its documentation:

The SLComposeViewController class presents a view to the user to compose a post for
supported social networking services.

Hey, that sounds perfect! When the user taps Send Tweet, we’ll just show the
SLComposeViewController, and let it do all the work of composing and sending a
tweet.

In ViewController.swift, rewrite the handleTweetButtonTapped() method as follows:

connecting/PragmaticTweets-5-2/PragmaticTweets/ViewController.swift
@IBAction func handleTweetButtonTapped(sender: UIButton) {Line 1

if SLComposeViewController.isAvailableForServiceType(SLServiceTypeTwitter){-

let tweetVC = SLComposeViewController(forServiceType:-

SLServiceTypeTwitter)-

tweetVC.setInitialText(5

"I just finished the first project in iOS 9 SDK Development. #pragsios9")-

self.presentViewController(tweetVC, animated: true, completion: nil)-

} else {-

NSLog("Can't send tweet")-

}10

}-

• Click HERE to purchase this book now. discuss

Coding the Action • 9

http://media.pragprog.com/titles/adios3/code/connecting/PragmaticTweets-5-2/PragmaticTweets/ViewController.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

Getting in Trouble on Purpose

You will probably see some little error icons appear in the left gutter while typing this
code. Sometimes these go away, as Xcode figures out that an incomplete line that
wouldn’t be valid code is in fact legitimate once it’s completed. In this case, however,
we’re going to get in trouble on purpose, as will be explained and resolved shortly.

To start with, on line 2 we ask the SLComposeViewController class if it’s even pos-
sible to send tweets: it might not be if a given social network isn’t set up to
post.

If we can send tweets, then we initialize a new SLComposeViewController on line
3, and we assign it to the variable tweetVC.

On lines 5–6, we set the initial text of the tweet to "I just finished the first project in
iOS 9 SDK Development. #pragsios9" by calling the setInitialText() method on tweetVC.

This is all we need to do to prepare the tweet, so on line 7, we show the tweet
composer by telling self (our own ViewController) to presentViewController() with the
newly created and configured tweetVC, setting the animated parameter to true,
which makes the tweet view “fly in.” The third parameter, completion, specifies
code to execute once the view comes up; we don’t need that, so we send nil.

Finally, if isAvailableForServiceType() returned false, the else block on lines 8–10 logs
a debugging message that we can’t send tweets. As our skills improve, we’ll
want to actually show the user a message in failure cases like this.

And that’s it. We did all the work in IB to create the button and have it call
this method when tapped, so we should be able to just build and tweet at
this point, right? Let’s try running the app. Click the Run button and see
what happens.

Disaster—the project doesn’t build anymore! Instead, we get a bunch of error
messages in red displayed alongside our code, as seen in the following figure.
Worse, depending on the width of the window, the errors are likely truncated.
What are we supposed to do?

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

