
Extracted from:

iOS 9 SDK Development
Creating iPhone and iPad Apps with Swift

This PDF file contains pages extracted from iOS 9 SDK Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

iOS 9 SDK Development
Creating iPhone and iPad Apps with Swift

Chris Adamson with Janie Clayton

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-132-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 3

Swift with Style
In the previous chapter, we explored the basics of Swift: the type system,
control flow, optionals, and so on. And, assuming Swift isn’t your first pro-
gramming language, you’ve probably guessed the next step is combining these
simple pieces together into more complex, more capable, and more interesting
constructs. While that is what we’re going to do, it’s not as straightforward
as you might think.

Swift is a remarkably flexible language, one that takes its inspiration from a
number of different sources. It’s true to both the object-oriented nature of
Objective-C and to new ideas about design, elegance, and maintainability in
functional programming languages. You can write Swift like Objective-C, like
C, like Java, or even like Haskell, and it will still work.

Since there’s no one right way to write Swift, we will be making choices about
how we want to organize our code. In this chapter, we’re going to look at what
Swift offers us for building bigger data structures, and how our choices will
affect the evolution of our apps as we write and rewrite them. If the one
hammer in your toolbox when you started this book was the good ol’ class,
let’s discover what we can do by taking lightweight types like structures and
enumerations and extending them with custom functionality.

Creating Classes
Many programmers—professionals and students, hobbyists and cowboy
coders—have grown up in the mind-set of object-oriented programming. As
Janie once said on the NSBrief podcast, “I didn’t think I was learning object-
oriented programming. I thought I was learning programming…like that was
the only way to do it.”

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

And it’s not like anyone’s wrong to learn OO! It’s the dominant paradigm for
a good reason: it has proven over the decades to be a good way to write
applications. Whole languages are built around the concepts of OO: it’s nigh-
impossible to break out of the OO paradigm in Java, and Objective-C has OO
in its very name, after all!

So let’s see how Swift supports object-oriented programming. The heart and
soul of OO is to create classes, collections of common behavior from which
we will create individual instances called objects. We’ll begin by creating a
new playground called ClassesPlayground, and deleting the "Hello, playground" line
as usual.

In the last chapter’s collections examples, we used arrays, sets, and dictionar-
ies to represent various models of iOS devices. But it’s not easy or elegant to
collect much more than a name that way, and there are lots of things we want
in an iOS device model. So we will create a class to represent iOS devices.

We’ll start by tracking a device’s model name and its physical dimensions:
width and height. Type the following into the playground:

stylishswift/ClassesPlayground.playground/Contents.swift
class IOSDevice {

var name : String
var screenHeight : Double
var screenWidth : Double

}

In Swift, we declare a class with the class keyword, followed by the class name.
If we were subclassing some other class, we would have a colon and the name
of the superclass, like class MyClass : MySuperclass, but we don’t need that for this
simple class.

Next, we have properties, the variables or constants associated with an object
instance. In this case, we are creating three variables: name, screenHeight, and
screenWidth.

There’s just one problem: this code produces an error. We need to start
thinking about how our properties work.

Properties
The error flag tells us “Class IOSDevice has no initializers,” and the red-circle
instant-fix icon offers three problems and solutions. The problem for each is
that there is no initial value for these properties. Before accepting the instant
fix, let’s consider what the problem is.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

The properties we have defined are not optionals, so, by definition, they must
have values. The tricky implication of that is that they must always have
values. The value can change, but it can’t be absent: that’s what optionals
are for.

We have a couple of options. We could accept the instant-fix suggestions and
assign default values for each. That would give us declarations like

var name : String = ""
var screenHeight : Double = 0.0
var screenWidth : Double = 0.0

That’s one solution, as long as we’re OK with the default values. But here
they don’t quite make sense because we probably never want an iOS device
with an empty string for a name.

Plan B: we can make everything optionals. To do this, we append the optional
type ? to the properties.

var name : String?
var screenHeight : Double?
var screenWidth : Double?

Again, no more error, so that’s good. Problem now is that any code that wants
to access these properties has to do the if let dance from the last chapter to
safely unwrap the optionals. And again, do we ever want the device name to
be nil? That seems kind of useless.

Fortunately, we have another alternative: Swift’s rule is that all properties
must be initialized by the end of every initializer. So we can write an initializer
to take initial values for these properties, and since that will be the only way
to create an IOSDevice, we can know that these values will always be populated.

So rewrite the class like this:

stylishswift/ClassesPlayground.playground/Contents.swift
class IOSDevice {Line 1

var name : String-

var screenHeight : Double-

var screenWidth : Double-

5

init (name: String, screenHeight: Double, screenWidth: Double) {-

self.name = name-

self.screenHeight = screenHeight-

self.screenWidth = screenWidth-

}10

}-

• Click HERE to purchase this book now. discuss

Creating Classes • 7

http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

The initializer runs from lines 6 to 10. The first line is the important one, as
it starts with init and then takes a name and type for each of the parameters
to be provided to the initializer code. In the initializer itself, we just use the
self keyword to assign the properties to these arguments.

To create an instance of IOSDevice, we call the initializer by the name of the
class, and provide these arguments by name. Create the constant iPhone6 after
the class’s closing brace, as follows (note that a line break has been added
to suit the book’s formatting; it’s OK to write this all on one line).

stylishswift/ClassesPlayground.playground/Contents.swift
let iPhone6 = IOSDevice(name: "iPhone 6",

screenHeight: 138.1, screenWidth: 67.0)

Congratulations! You’ve instantiated your first custom object, as the “IOSDe-
vice” in the results pane indicates. Notice that the names of the arguments
to the initializer are used as labels in actually calling the initializer. This helps
us keep track of which argument is which, something that can be a problem
in other languages when you call things that have lots of arguments.

Computed Properties
The three properties we’ve added to our class are stored properties, meaning
that Swift creates the in-memory storage for the String and the two Doubles. We
access these properties on an instance with dot syntax, like iPhone6.name.

Swift also has another kind of property, the computed property, which is a
property that doesn’t need storage because it can be produced by other means.

Right now we have a screenWidth and a screenHeight. Obviously, it would be easy
to get the screen’s area by just multiplying those two together. Instead of
making the caller do that math, we can have IOSDevice expose it as a computed
property. Back inside the class’s curly braces—just after the other variables
and before the init() is the customary place for it—add the following:

stylishswift/ClassesPlayground.playground/Contents.swift
var screenArea : Double {

get {
return screenWidth * screenHeight

}
}

Back at the bottom of the file, after creating the iPhone6 constant, fetch the
computed property by calling it with the same dot syntax as with a stored
property:

iPhone6.screenArea

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

The results pane shows the computed area, 9,252.7 (or possibly 9252.699…).

With only a get block, the screenArea is a read-only computed property. We
could also provide a set, but that doesn’t really make sense in this case.

It’s also possible for stored properties to run arbitrary code; instead of com-
puting values, we can give stored properties willSet and didSet blocks to run
immediately before or after setting the property’s value. We’ll use this approach
later on in the book.

Methods
Speaking of running arbitrary code, one other thing we expect classes to do
is to let us, you know, do stuff. In object-oriented languages, classes have
methods that instruct the class to perform some function. Of course, Swift
makes this straightforward.

Let’s take our web radio player from the first chapter and add that to our
IOSDevice. After all, real iOS devices are used for playing music all the time,
right? We’ll start by adding the import statement to bring in the audio-video
APIs, and the special code we used to let the playground keep playing. Add
the following at the top of the file, below the existing import UIKit line:

stylishswift/ClassesPlayground.playground/Contents.swift
import AVFoundation
import XCPlayground
XCPlaygroundPage.currentPage.needsIndefiniteExecution = true

We need our IOSDevice to have an AVPlayer we can start and stop, so add that
as a property after the existing name, screenHeight, and screenWidth:

stylishswift/ClassesPlayground.playground/Contents.swift
private var audioPlayer : AVPlayer?

Notice that this property is an optional type, AVPlayer?, since it will be nil until
it is needed.

Now, let’s add a method to the class. We do this with the func keyword, followed
by the method name, a list of arguments, and a return type. Add this playAudio()
method somewhere inside the class’s curly braces, ideally after the init’s closing
brace, since we usually write our initializers first and our methods next.

stylishswift/ClassesPlayground.playground/Contents.swift
func playAudioWithURL(url: NSURL) -> Void {

audioPlayer = AVPlayer(URL: url)
audioPlayer!.play()

}

• Click HERE to purchase this book now. discuss

Creating Classes • 9

http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

Like the init, the parentheses contain the parameters to the method and their
types. By convention, we often imply the first parameter type in the name of
the method. This is because when we call the method, we do not label the
first parameter, but we do use labels for any other parameters. For example,
if playAudioWithURL() also took a rate argument, we would call it like playAudioWith-
URL(someURL, rate: 1.0). Compared to some languages, the labeled parameters
may seem chatty or verbose, but, in practice, they make the code more
readable by exposing what each value is there for.

After the parameters, the return type is indicated by the -> arrow. In this
case, the method returns nothing, so we return Void. (In fact, when we return
Void we can omit the arrow and the return.) The rest of the method is the two
lines of code we used in the first chapter to create the AVPlayer and start playing.

Now let’s call it and start playing music. Put the following at the bottom of
the file, after where we create the iPhone6 instance.

stylishswift/ClassesPlayground.playground/Contents.swift
if let url = NSURL(string: "http://armitunes.com:8010/listen.pls") {

iPhone6.playAudioWithURL(url)
}

The first line attempts to create an NSURL out of the provided string. We use
an if let because, if our string is garbage, what we get back from the initializer
could be nil. This is because the NSURL provides a failable initializer, one that
reserves the right to return nil instead of a new object. It’s denoted this way
in the documentation with the keyword init?, where the ? clues us in to the
fact that optionals are in play.

Wrapping this in an if let means that we will only enter the curly-braced region
if the initialization succeeds and assigns the value to the local variable url.
This is the proper practice for failable initializers and gets around the bad
practice we used in the first chapter when we just force-unwrapped the NSURL?
optional with the ! operator.

And once we’re safely inside the if let, we call the playAudioWithURL() method that
we just wrote, and the music starts playing. If we wanted to write a proper
stopAudio() method, that would look like this:

stylishswift/ClassesPlayground.playground/Contents.swift
func stopAudio() -> Void {

if let audioPlayer = audioPlayer {
audioPlayer.pause()

}
audioPlayer = nil

}

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://media.pragprog.com/titles/adios3/code/stylishswift/ClassesPlayground.playground/Contents.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

Again, we use an if let to safely unwrap the audioPlayer optional, and only if that
succeeds do we pause() it. Then we can set audioPlayer back to nil.

Turn That Music Down

Remember that any change to the playground text will cause the
contents to be rebuilt and rerun, which means that any change
we make from here out will restart the audio. It’s funny the first
few times, but it gets annoying.

If you want to turn it off, just comment out the call to playAudioWith-
URL(). Swift uses the same comment syntax as all C-derived lan-
guages (Objective-C, C#, Java, etc.). That means you can either
put // on the start of a line to turn it into a comment, or surround
a whole range of lines with a starting /* and a closing */.

• Click HERE to purchase this book now. discuss

Creating Classes • 11

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

