
Extracted from:

iOS 9 SDK Development
Creating iPhone and iPad Apps with Swift

This PDF file contains pages extracted from iOS 9 SDK Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

iOS 9 SDK Development
Creating iPhone and iPad Apps with Swift

Chris Adamson with Janie Clayton

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-132-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Working with Tables
For organizing and presenting many of the kinds of data we see in iPhone
and iPad apps, it’s hard to beat a table view. Thanks to the intuitive flick-
scrolling provided by iOS, it’s comfortable and convenient to whip through
lists of items to find just the thing we need, with each item visually presented
in whatever way makes sense for the app. In many apps, the table view is the
bedrock of the app’s presentation and organization.

In this chapter, we’re going start turning our Twitter application into one
that’s based around a table view. However, it’s going to take us a few chapters
to completely move away from the web view. First, we’ll put some fake data
into a table view, and then in the following chapters we’ll get real data from
the Twitter API and load it into the table view.

Tables on iOS
Coming from the desktop, one might expect a UITableView to look something
like a spreadsheet, with rows and columns presented in a two-dimensional
grid. Instead, the table view is a vertically scrolling list of items, optionally
split into sections.

The table view is essential for many of the apps that ship with the iPhone, as
well as popular third-party apps. In Mail, tables are used for the list of
accounts, the mailboxes within each account, and the contents of each
mailbox. The Reminders app is little more than a table view with some editing
features, as are the alarms in the Clock app. The Music app shows lists of
artists or albums, and within them lists of songs. Even the Settings app is
built around a table, albeit one of a different style than is used in most apps
(more on that later).

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

And while our Twitter app currently displays a web view of all the tweets we’ve
parsed, pretty much every Twitter app out there (including the official Twitter
app, as well as Twitterrific, Tweetbot, and Echofon) uses a table view to present
tweets.

So our task now is to switch from the web view to a table view–based presen-
tation of the tweets. We’ll build this up slowly, as our understanding of tables
and what they can do for us develops.

Table Classes
To add a table to an iOS app, we use an instance of UITableView. This is a UIS-
crollView subclass, itself a subclass of UIView, so it can either be a full-screen
view unto itself or embedded as the child of another view. It cannot, however,
have arbitrary subviews added to it, as it uses its subviews to present the
individual cells within the table view.

The table has two properties that are crucial for it to actually do anything.
The most important is the dataSource, which is an object that implements the
UITableViewDataSource protocol. This protocol defines methods that tell the table
how many sections it has (and optionally what their titles are) and how many
rows are in a given section, and provides a cell view for a given section-row
pair. The data source also has editing methods that allow for the addition,
deletion, or reordering of table contents. There’s also a delegate, an object
implementing the UITableViewDelegate protocol, which provides method definitions
for handling selection of rows and other user interface events.

These roles are performed not by the table itself—whose only responsibility
is presenting the data and tracking user gestures like scrolling and selec-
tion—but by some other object, often a view controller. Typically, there are
two approaches to wiring up a table to its contents:

• Have a UIViewController implement the UITableViewDataSource and UITableViewDele-
gate protocols.

• Use a UITableViewController, a subclass of the UIViewController that is also defined
as implementing the UITableViewDataSource and UITableViewDelegate protocols

It’s helpful to use the second approach when the only view presented by the
controller is a table, as this gives us some nice additional functionality like
built-in pull-to-refresh, or scrolling to the top when the status bar is tapped.
But if the table is just a subview, and the main view has other subviews like
buttons or a heads-up view, then we need to use the first approach instead.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

Model-View-Controller

The careful apportioning of responsibilities between the view class and the controller
comes from UIKit’s use of the model-view-controller design pattern, or MVC. The idea
of this design is to split out three distinct responsibilities of our UI:

• Model—The data to be presented, such as the array of tweets

• View—The user interface object, like a text view or a table

• Controller—The logic that connects the model and the view, such as how to fill
in the rows of the table, and what to do when a row is tapped

This pattern explains why the class we’ve been doing most of our work in is a “view
controller”; as a controller, it provides the logic that populates an onscreen view, and
updates its state in reaction to user interface events. Notice that it is not necessary
for each member of the design to be have its own class: the view is an object we cre-
ated in the storyboard, and the model can be a simple object like an array. At this
point in our app’s evolution, only the controller currently requires a custom class.
Still, some developers prefer the clarity of each role having its own class, so sometimes
you’ll see a class that exists only to implement UITableViewDataSource for a given table.

Creating and Connecting Tables
We’re going to need to make some major changes to our user interface to
switch to a table-driven approach. In fact, we’re going to blow away our orig-
inal view entirely. We’ll get all our functionality back eventually, and we’ll be
in a better position to build out deeper and more interesting features. Even-
tually, we’ll have an app that looks and feels like a real Twitter client.

We’ll start by preparing our view controller to supply the table data. We can
do this by either declaring that we implement UITableViewDataSource, or by
becoming a subclass of UITableViewController. Since the table will be the only
thing in this view, let’s do the latter. In ViewController.swift, rewrite the declaration
like this:

tables/PragmaticTweets-7-1/PragmaticTweets/ViewController.swift
class ViewController: UITableViewController {

Adding a Table View to the Storyboard
Now switch to Main.storyboard and look through the Object area
at the bottom right for the Table View Controller object,
shown in this figure. Drag one into the storyboard, anywhere
where it won’t collide with the existing view controller. This
adds a new Table View Controller Scene to the list of scenes in the storyboard.

• Click HERE to purchase this book now. discuss

Creating and Connecting Tables • 7

http://media.pragprog.com/titles/adios3/code/tables/PragmaticTweets-7-1/PragmaticTweets/ViewController.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

Select the view controller from the previously existing scene and press J to
delete the old scene. This leaves the storyboard with no entry point. Select
the Table View Controller, bring up its Attributes Inspector (ED4), and select
the Is Initial View Controller check box. The view gets an arrow on its left
side, showing our app once again has a place to start. The view itself shows
a status bar that says Prototype Cells above a Table View that has a single
Table View Cell as a subview, as seen in the following figure:

We can run this app…but it shows an empty table! That’s because the table
is not yet connected to a data source that can provide it with cells or even a
count of how many sections and rows there are. Let’s get to work on that.

Providing a Temporary Table Data Source
As it is, the table in the storyboard doesn’t know to use our class; it expects
to create a generic UITableViewController for the table. We want it to use our View-
Controller instead. So, while still in Main.storyboard, choose the Table View Con-
troller and visit its Identity Inspector in the right-side pane (ED3). In the
Custom Class section, for the Class, enter ViewController. This should autocom-
plete, since we declared that our ViewController class is a valid UITableViewController,
although we’ve done nothing to implement that behavior yet.

While here, Control-click on the table view, or visit its Connections Inspector
(ED6), and notice that table view’s connections to the dataSource and delegate
properties are already wired up, connected to the view controller.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

As a warm-up, let’s provide a trivial implementation of the data source
methods, just to ensure the new storyboard and its connections are good to
go. To do this, our data source needs to provide a minimum of three things:
the number of sections, the number of rows in a given section, and a cell for
a given section and row. In ViewController.swift, provide the following trivial
implementations of the UITableViewDataSource methods numberOfSectionsInTableView(),
tableView(numberOfRowsInSection:), and tableView(cellForRowAtIndexPath:), as well as the
optional tableView(titleForHeaderInSection:), which will let us see the section breaks.

tables/PragmaticTweets-7-1/PragmaticTweets/ViewController.swift
override func numberOfSectionsInTableView(tableView: UITableView)

-> Int {
return 5

}

override func tableView(tableView: UITableView,
titleForHeaderInSection section: Int) -> String? {

return "Section \(section)"
}

override func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {

return section + 1
}

override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

let cell = UITableViewCell(style: .Default, reuseIdentifier: nil)
cell.textLabel?.text = "Row \(indexPath.row)"
return cell

}

Notice that in our quick-and-dirty table code, three of our methods are called
tableView(). The reason these methods don’t get confused with one another is
because they’re differentiated by their named parameters: one takes titleFor-
HeaderInSection, another takes cellForRowAtIndexPath, and so on.

By convention, all these methods take the table view in question as their first
argument, so if we had multiple tables, a method would be able to figure out
which table it’s working with.

But as for why it has to be the first parameter, that’s more of a legacy of
Objective-C, where it was somewhat more natural to incorporate the name
of your first parameter into the method name, and differentiate with the rest
of the parameters. Swift came later, so we’re stuck with the old naming
schemes, at least for now.

In this book, when we encounter cases where the method name by itself isn’t
unique, we’ll include the parameters for clarity. That way, we’ll call out the

• Click HERE to purchase this book now. discuss

Creating and Connecting Tables • 9

http://media.pragprog.com/titles/adios3/code/tables/PragmaticTweets-7-1/PragmaticTweets/ViewController.swift
http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

difference between tableView(numberOfRowsInSection:) and tableView(cellForRowAtIndex-
Path:), but we won’t feel the need to write viewWillAppear(animated:) when there’s
only one method that starts like that, so it can be written as just viewWillAppear().

Chained Optionals

One other new thing to notice in the tableView(cellForRowAtIndexPath:) implementation is
this line:

cell.textLabel?.text = "Row \(indexPath.row)"

This particular use of the ? operator is new, and quite handy. The textLabel property
of UITableViewCell is an optional, so ordinarily we would want to test it with an if let or
guard let. But in the middle of a chain of dot accessors, this is burdensome. And to
just force-unwrap with ! would be dangerous.

One alternative is to use the ? right before a dot operator. This syntax is called the
chained optional, and it works like this: the expression is evaluated left-to-right, and
all optionals marked with ? are tested against nil. If any optional is nil, processing stops
and the whole expression evaluates to nil. In an assignment like this, it’s OK for the
left side to be nil, because assigning a value to nil (instead of to a real variable) just
quietly does nothing.

If none of the optionals are nil, then we can get the value at the end of the chain, albeit
with one caveat: its type becomes optional, even if the last type in the chain wasn’t
optional. Again, that’s fine here, because the text property of the textLabel is also an
optional type: String?.

Lots of the changes since Swift 1.0 have made dealing with optionals easier. This is
one we’ll get a lot of mileage out of.

Anyway, while we’re in the ViewController.swift file, let’s delete the line that declares
the twitterWebView that no longer exists, and all of the handleShowMyTweetsTapped()
methods that populated it. We won’t need those anymore. Also, delete the
contents of reloadTweets(), but leave the method definition; we’ll rebuild that
one shortly. Finally, with no twitterWebView, there’s no need for the WebViewTests
test class, so delete that entire file.

In this implementation, we are telling the table that there are five sections,
that each section has one more row than the section index (that is to say,
there’s one row in section 0, two rows in section 1, etc.), and that any time a
new cell is needed, it should create a new UITableViewCell, get its textLabel property
(a UILabel), and set the text property of the label to a string that shows the row
number. When run, the table will look like the figure on page 125.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

You may be wondering why the status bar overlaps
the table. This is one of the more controversial aspects
of the iOS 7 visual design—view controllers default
into a full-screen mode. In fact, the property wants-
FullScreenLayout was deprecated in iOS 7, and since then
view controllers are assumed to always fill the screen
with their views, even the space under the status bar.

It looks horrible at first, but the idea is that once we
start scrolling and see content go under the status
bar, the transparency of the status bar gives us a
visual cue about information that is about to come
fully into view. In later chapters, we’ll add a naviga-
tion bar at the top and then it’ll look and feel a lot
better.

Notice that tableView(cellForRowAtIndexPath:) passes in an NSIndexPath. This is a class
originally intended for representing paths in tree structures, things like “the
third child of the second child of the root node.” In iOS, it is pressed into
service representing table entries. NSIndexPath is extended to add the properties
section and row (which are implemented as just the first and second entries in
the path), and this combination of section and row can uniquely identify any
cell in UITableView.

Now we have a table and a way to get data into it. What we need to do next
is provide a nontrivial implementation of the data source, one that actually
shows some tweets.

• Click HERE to purchase this book now. discuss

Creating and Connecting Tables • 11

http://pragprog.com/titles/adios3
http://forums.pragprog.com/forums/adios3

