
Extracted from:

iOS 10 SDK Development
Creating iPhone and iPad Apps with Swift

This PDF file contains pages extracted from iOS 10 SDK Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

iOS 10 SDK Development
Creating iPhone and iPad Apps with Swift

Chris Adamson
with Janie Clayton

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Rebecca Gulick
Indexing: Potomac Indexing, LLC
Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-210-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Handling Asynchronicity with Closures
Our player UI can play and pause audio, update the button label based on
whether audio is playing or paused, and show a title. And in the last chapter,
we exposed that functionality to unit testing, to make sure it keeps working.
But there’s one part of the UI we still haven’t implemented: the label that
shows the current playback time.

Thing is, time can be a real challenge for software. It’s easy to write a series
of instructions and have them executed in order. It’s harder when things
naturally happen at unpredictable times that we have to respond to, or when
we want something to happen in the future, or if we have to respond to
something and then do something.

We’ve seen two of iOS’s older approaches to this: Timers to do work in the
future (possibly repeatedly), and key-value observing (KVO) to respond to
changes in supported properties. But both require somewhat clunky schemes
to call back to designated objects, with special conventions for method names
or parameter lists. It would be nice if there were something cleaner, so we
could just say, “Every half-second, do this,” or “When something special
happens, do that.”

Lucky for us, this cleaner approach—a Swift type that itself contains exe-
cutable code—already exists, and we’re going to put it to work in this chapter.

Understanding Closures
So let’s think about the time display for our media player. Whenever media
is playing, we want to periodically get the current playback time, and show
that in the label as minutes and seconds…maybe hours, too, for those pod-
casts that won’t wrap it up already. (You know who you are!)

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

In Using a Timer, on page ?, we learned how to use the Timer for our asyn-
chronous tests, and it seems like that would work here, too. We could create
a timer to periodically check on the player, get its current time, and update
the label. That’s fine, of course, although maybe a little wasteful if it keeps
running when playback is paused, and there’s extra code to write if we have
to create a new timer when we start playing and destroy it when we pause.

Thinking about it, though, we didn’t need a timer to change the Play/Pause
button: that was based on an event we could observe from the player itself
with KVO. So it’s reasonable to think that AVPlayer could offer something
appropriate for a playback time display.

If we look in the AVPlayer documentation, we find there’s a discussion called
“Timed State Observations,” which says:

KVO works well for general state observations, but isn’t intended for observing
continuously changing state like the player’s time. AVPlayer provides two methods
to observe time changes:

See? Just what we need! The section goes on to explain there are two methods
to add these kinds of time observers—one for continuous observation, and
another just for specific times, like reaching the end of the playing item. The
first is what we need, so follow the link to the documentation for addPeriodic-
TimeObserver(forInterval:queue:using:). Now let’s look at the declaration to see how
we call it:

func addPeriodicTimeObserver(forInterval interval: CMTime,
queue: DispatchQueue?,
using block: @escaping (CMTime) -> Void) -> Any

What…the…heck?

OK, let’s step back. This takes three arguments, and the first two are easy
enough to understand: a CMTime with external name forInterval, and an optional
DispatchQueue (whatever that is!) called queue. And the return type is an Any, so
that’s fine.

Obviously, the weird part is that third parameter, with external name using
and internal name block. What’s weird is its type: @escaping (CMTime) -> Void.

Set aside the @escaping for a moment, and consider what’s left: (CMTime) -> Void.
With the types on both sides of the arrow, that looks like a function or method
declaration, right? Parameter types on the left, return type on the right?

That’s pretty much what it is, in fact. This is the syntax for a closure, a self-
contained block of functionality. Closures can take arguments, do work, and
return a value…just like the functions and methods we’re already used to.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

But it’s not that closures are a variation on functions; in fact, it’s the other
way around. Swift functions and methods are just special cases of closures!
A closure is just some code represented as an object, and thus a function is
a closure with a name, and then a method is a function associated with an
instance of some type.

But closures are important because, as a Swift type, they can also be passed
as parameters, stored in variables, and returned by functions and methods.
We can pretty much do the same things with closures as we already do with
Ints, Strings, and objects.

And using it as a type is what addPeriodicTimeObserver() is offering: we pass in a
closure to be executed periodically—say, once every half-second—and the
code in that closure gets repeatedly executed on that schedule. We don’t have
to use some special method name and parameter list like KVO’s observeVal-
ue(forKeyPath:of:change:object:), and as a bonus, AVPlayer only calls this method
when the media is playing.

Closures are perfect for our time label, so let’s see how to use them.

Coding with Closures
To try out closures, we are going to call addPeriodicTimeObserver(forInterval:queue:
using:), passing in a closure to call repeatedly when our podcast is playing.
There’s a little housekeeping we have to do for this approach: the docs say
that the return value is an object of type Any that we will eventually provide
to removeTimeObserver() to stop our updating. So, with the other properties near
the top of ViewController.swift, add a property where we can hold on to this object.
It’ll need to be an optional, since we won’t actually create it until long after
init() is done.

closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
private var playerPeriodicObserver : Any?

We already cleaned up the player’s KVO observer for the Play/Pause button
in deinit(), so let’s clean up this playerPeriodicObserver there, too, by adding the
following:

closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
if let oldObserver = playerPeriodicObserver {

player?.removeTimeObserver(oldObserver)
}

Notice that since playerPeriodicObserver is an optional, and removeTimeObserver()
takes a non-optional parameter, we carefully unwrap with an if let.

• Click HERE to purchase this book now. discuss

Coding with Closures • 7

http://media.pragprog.com/titles/adios4/code/closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
http://media.pragprog.com/titles/adios4/code/closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

A Simple Closure
Now we’re ready to add the periodic observer. We’ll do that in set(url:), where
we currently create the player and set up the observer. For the moment, let’s
just log a message in the closure, before we worry about updating the UI.

closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
let interval = CMTime(seconds: 0.25, preferredTimescale: 1000)Line 1

playerPeriodicObserver =2

player?.addPeriodicTimeObserver(forInterval: interval,3

queue: nil,4

using:5

{ currentTime in6

print("current time \(currentTime.seconds)")7

})8

Because addPeriodicTimeObserver() wants a CMTime to indicate how often we want
our closure to run, we create one on line 2. Without getting too deeply into
the Core Media framework, the idea of a CMTime instance is that it uses a
timescale to represent how accurately it’s keeping time. We don’t need it to be
super-accurate for a UI display, so we’ll just update every quarter-second,
keeping track of time in 1000ths of a second.

Lines 2-8 are one big call to addPeriodicTimeObserver(). Line 3 specifies the
0.25-second interval we just created. For the queue on line 4, the docs say we
can pass nil for the default behavior, so that’s what we’ll do for now.

Finally, we have the using parameter on line 5. This takes our closure, which
runs from lines 6 to 8. To write a closure, we use the syntax:

{ paramName1, paramName2, ... -> returnType in code... }

Simply put, the contents of a closure are a list of parameters, the arrow with
a return type (omitted if none), the in keyword, and then executable code, all
inside curly braces. We can choose whatever names we like for the parameters;
in this case, the actual type of currentTime was defined as CMTime back in
addPeriodicTimeObserver()’s declaration of its own using parameter.

So the closure receives a single parameter that we’ve called currentTime. To keep
things simple, we’ll just print() it, in seconds, on line 7.

Run the app, and click the Play button. In the console area at the bottom of
the Xcode window—bring it up with BDC or View > Debug Area > Activate
Console, if it doesn’t appear automatically—you’ll see the log messages appear
every 0.25 seconds or so as shown in the figure at the top of the next page.
Hit Pause, and they’ll stop, and then resume when you tap Play again.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios4/code/closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

So, we’re off and running, literally. We now have a simple block of code that
will be called every 0.25 seconds when the podcast episode is playing. As a
bonus, there’s far less boilerplate than we had from setting up callback
methods for KVO or Timers. Another advantage in Swift is that a closure can
be created pretty much anywhere—in free functions, or methods on enums or
structs, for example, whereas the callback approaches we saw earlier only work
with full-blown objects.

Updating the Label from the Closure
Now we’re ready to have our closure actually update the label with the current
playback time. First things first, though: we don’t currently have an outlet
to the label, and we need one in order to change its text from code. We’ll wire
up a connection just like we did with the other UI elements.

Switch to Main.storyboard and select the 0:00 label. Bring up the Assistant Editor
with the “two rings” toolbar button, or EDF. Make sure that ViewController.swift
comes up as the Automatic selection in the right pane, and then Control-drag
from the 0:00 label in the storyboard to the properties in the code. When you
end the drag, a pop-up appears to fill in the details; give it the name timeLabel,
and make sure the connection is “outlet,” the type is UILabel, and the storage
is “strong,” and then click Connect.

• Click HERE to purchase this book now. discuss

Coding with Closures • 9

http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

Now we’re ready to populate this label. Switch back to the Standard Editor
(DF) and return to ViewController.swift. Go down to the closure in set(url:). We
could write all our label-updating code inside the closure, but we’re already
indented pretty far, so putting a bunch of code here is going to be kind of
ugly. Instead, replace the print() line with the following method call:

closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
self.updateTimeLabel(currentTime)

For the moment, this is going to bring up an error because we haven’t written
the updateTimeLabel() method yet. But, more importantly, notice how we use self
here. The closure has access to any variables currently in scope when the
closure is created. Since self is available anywhere in the class, the closure
can see it. Other variables local to set(url:), like url or interval, could be called
too, if they were useful inside the closure. We call this capturing the variable.

Capture and Escape

The idea of a closure “capturing” a variable also explains the
@escaping we saw back in the definition of addPeriodicTimeObserver().
This keyword is a signal that the closure will be held on to by the
method or function receiving the closure, which in turn means
that variables referenced by the closure will live on past the
lifespan of the function call that receives the closure—addPeriodic-
TimeObserver() in this case—even a local variable that would other-
wise disappear.

There’s a corresponding @noescape that means variables captured
by the closure won’t be used after the function call that takes the
closure. This lets the compiler make certain optimizations that
aren’t possible if the variable is going to hang around.

@escaping is by far the more common scenario, and it has an
important side effect. When we refer to properties or methods from
inside the closure, we explicitly have to use self, as we do here, to
acknowledge that we know we’re capturing self. Forgetting self in
a closure is an easy mistake to make, but it’s also easy to correct:
you’ll see an error telling you that you need to add self to “make
capture semantics explicit.”

Now let’s get this label to update its text by writing the missing updateTimeLabel()
method. There’s nothing closure-y about this; it’s just some math and string
formatting:

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios4/code/closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
private func updateTimeLabel(_ currentTime: CMTime) {Line 1

let totalSeconds = currentTime.seconds2

let minutes = Int(totalSeconds / 60)3

let seconds = Int(totalSeconds.truncatingRemainder(dividingBy: 60))4

let secondsString = seconds >= 10 ? "\(seconds)" : "0\(seconds)"5

timeLabel.text = "\(minutes):\(secondsString)"6

}7

To format the string, we convert the CMTime into a total number of seconds,
and then divvy that into minutes and seconds. The minutes are easy (just
divide by 60), but the seconds are a little more obscure: Swift 3 eliminates
the modulo operator (%) seen in many other languages, and instead requires
us to use a method called truncatingRemainder(), as seen on line 4. With minutes
and seconds computed, we figure out if the seconds need a leading “0” (line 5),
and then set timeLabel’s text to a colon-separated string.

And that’s it! Run the app again, tap Play, and watch
as the time counter counts up along with our play-
back.

We know from our earlier log statements that it
doesn’t bother updating when we’re paused, and if
we had a slider to skip around the podcast, the label
would stay updated, since it’s getting a new currentTime
every quarter-second.

• Click HERE to purchase this book now. discuss

Coding with Closures • 11

http://media.pragprog.com/titles/adios4/code/closures/PragmaticPodcasts-7-1/PragmaticPodcasts/ViewController.swift
http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

