Extracted from:

iOS 10 SDK Development

Creating iPhone and iPad Apps with Swift

This PDF file contains pages extracted from iOS 10 SDK Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ema‘tic
ogrammers

iOS 10 SDK
Development

3
Creating iPhone and
iPad Apps with Swift

Chris Adamson
with Janie Clayton

edited by Rebecca Gulick

iOS 10 SDK Development

Creating iPhone and iPad Apps with Swift

Chris Adamson
with Janie Clayton

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Executive Editor: Susannah Davidson Pfalzer
Development Editor: Rebecca Gulick
Indexing: Potomac Indexing, LLC

Copy Editor: Nicole Abramowitz

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-210-7

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Segueing Between Scenes

At first glance, this looks like a lot of work to add what’s little more than a
title bar to our app, but we're now set up to start navigating between scenes.
It gets pretty easy from here.

How easy? Like, drawing one line easy. In .
Selection Segue

Main.storyboard, go to the episode list scene, Shaw
select the table cell, and Control-drag from it Show Detail
to th 1 At th d of the d Present Modally
o the player scene. e end of the drag, a Present As Popover
pop-up appears (shown here), listing a set of Custom
choices for Selection Segue, Accessory Action, Acgf::"" Action
and some deprecated choices. From the top Show Datail
section, choose Show. Once you release, this Present Modally
. . Present As Popover
creates a new arrow between the episode list Custom
and player Scenes. Mon-Adaptive Selection Segue
Push (deprecated)
More importantly, this gives us navigation to Modal (deprecated)

the player scene! Run the app again and tap

on any of the table rows. The player scene slides in from the right, and the
navigation bar updates to show a back button called Podcasts (the title of the
previous view controller on the navigation stack) at upper-left, and clears out
the title, since this scene doesn’t have a navigation item. Click the back button
to return to the episode list, and click another row to revisit the player. The
player still plays the MP3 we hard-coded it to a few chapters back, but we
can work on that next.

Updating the Player Scene for Navigation

In the storyboard, notice that the player scene now has a simulated
navigation bar at its top. It may be overlapping some of the contents; ‘ < ‘
if that's the case, as before, select the view controller, visit the “——
Attributes Inspector, and turn off Adjust Scroll View Insets. Also,
we can give this scene a proper title by going to the Object Library at bottom
right and dragging in a Navigation Item (the icon with the back button, but
without the yellow ball). Drop it anywhere in the scene, and in the Attributes

Inspector, give it the title Player.

While we're here, let's attend to one last piece of business: the player view
controller class has just been called ViewController since we started the project.
With other view controllers in play, it's now ambiguous. Bring up the file
explorer in the left pane, slowly double-click ViewController.swift, and rename it
to PlayerViewController.swift. Then edit its class declaration to its new name:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

°6

navigation/PragmaticPodcasts-10-1/PragmaticPodcasts/PlayerViewController.swift
class PlayerViewController: UIViewController {

Of course, now the storyboard has a scene that refers to a ViewController that
no longer exists. Select the player scene’s view controller icon (the yellow ball),
go to its Identity Inspector (.3 3), and change the class to PlayerViewController.

Customizing Segues

Now let’s figure out how to make the player use the podcast episode that we
clicked on. The secrets are in that line we drew between the two scenes. When
we did that, the storyboard added an arrow with an icon between the episode
list and player scenes.

This arrow represents a segue, an object for a transition between two story-
board scenes. The little icon in the circle shows the type of segue—this one
is a “push” segue, where the incoming scene pushes the old one off the side.
Along with knowing which scenes are connected and how, the segue allows
us to interact with the transition in code.

Segues can have attributes of their own, and it is a good habit to assign each
one an identifier, so that our code can figure out which segue is being per-
formed. Click on the segue arrow, bring up the Attributes Inspector, and enter
showPlayer for the identifier (any string will do; you just have to be consistent
between storyboard and code).

In code, when a segue is about to be performed, the view controller currently
on the screen gets two method callbacks prior to the transition actually taking
place:

e shouldPerformSegue(withldentifier:sender:) gives the current view controller an
opportunity to permit or veto the named segue. If it returns false, the segue
is not performed.

e prepare(for:sender:) is called right before the transition. The first parameter
is a UlStoryboardSegue, an object that provides the identifier and both the
source and destination view controllers. This gives the current view con-
troller an opportunity to prepare the destination scene before it even
appears.

The latter method is what we need to prepare the player scene. When pre-
pare(for:sender:) is called, we can get the PodcastEpisode that was tapped on, and

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios4/code/navigation/PragmaticPodcasts-10-1/PragmaticPodcasts/PlayerViewController.swift
http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

Segueing Between Scenes ® 7

set up the player scene with its audio URL and title. Then, when the scene
flies in, it'll be all ready for the user to tap Play.

That said, we don’t want the episode list modifying the player scene’s fields
directly—they could change, after all. So let’s go over to PlayerViewController.swift
and give it a way of accepting an episode to display and play:
navigation/PragmaticPodcasts-10-1/PragmaticPodcasts/PlayerViewController.swift
Line1 var episode : PodcastEpisode? {
didSet {
loadViewIfNeeded()
titleLabel.text = episode?.title
5 if let url = episode?.enclosureURL {
set (url: url)

}
if let imageURL = episode?.iTunesImageURL {
let session = URLSession(configuration: .default)
10 let dataTask = session.dataTask(with: imageURL) { dataMb, , in
- if let data = dataMb {
DispatchQueue.main.async {
self.logoView.image = UIImage(data: data)
- }
15 }
- }

dataTask.resume()
}
}

20 }
This gives us an episode property, with a lot going on in its didSet. Let’s take it
step by step:

e We start with line 3, handling an important problem with segues, one
that isn’t immediately obvious. A view in a storyboard isn’t actually loaded
until it needs to be onscreen...but that means the view won’t be loaded
when prepare(for:sender:) is about to segue to this scene, which in turn means
that none of the IBOutlets (like titleLabel) will be available yet. Manually
forcing the view to load if needed, with loadViewlfNeeded(), fixes this problem.

¢ On line 4, we set the contents of the titleLabel from the PodcastEpisode’s title.

e Lines 5-7 unwrap the episode’s URL and use it to call setURL(). This method
was one of the first things we wrote, and sets up the AVPlayer to play the
podcast audio.

e Finally, there’s a big section from lines 8-18 that populates the big image
view. If we can unwrap an imageURL, we create a URLSession (line 9) and give
it a URLSessionDataTask (line 10). This works like the other image-loading

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios4/code/navigation/PragmaticPodcasts-10-1/PragmaticPodcasts/PlayerViewController.swift
http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

*8

data tasks that we’ve written before: its closure (lines 10-16) looks to see
if we got any data (line 11), and if so, dispatches to the main queue (lines
12-14) to create a new Ullmage and set it as the image of logoView. Finally,
after declaring this whole dataTask, we start it on line 17.

Also, while we’re in PlayerViewController.swift, we can now take out the code we
had set up to play a hard-coded URL. Delete the entire viewDidLoad(), as well
as the line titleLabel.text = url.lastPathComponent in set(url:).

Now the player is ready to receive a PodcastEpisode when it’'s on the receiving
end of a segue. Switch over to EpisodeListViewController.swift and write a new pre-
pare(for:sender:) method.

navigation/PragmaticPodcasts-10-1/PragmaticPodcasts/EpisodeListViewController.swift
Line1 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
if segue.identifier == "showPlayer",
let playerVC = segue.destination as? PlayerViewController,
let indexPath = table.indexPathForSelectedRow {
let episode = feeds[indexPath.section].episodes[indexPath. row]
playerVC.episode = episode
}
}

Lines 2 and 3 test the segue to see if the segue is the one we expect and that
the destination can be cast to PlayerViewController. Line 4 uses the table’s index-
PathForSelectedRow to figure out which row was tapped and get its corresponding
PodcastEpisode on line 5. If all of that works, we simply set the episode property
of the PlayerViewController, triggering the didSet that we just wrote in that class.

0 N O A WN

And that’s all we need. Run the app and give it a | = S 2N -
try: scroll down to any row and tap it. The player | <Podeasts Player

will slide in with its label set to the episode we | Pguse 0:42
tapped on, and when you tap Play, that episode | ¢ 4e1s: 1j Usiyan

will load and start playing.

Look at that—or more accurately, listen to that. We
now have an honest-to-gosh working podcast
player! It downloads and parses a feed, shows its
episode, lets us pick one, shows some of its meta-
data, and plays its audio. Maybe it's no Overcast
or Pocket Casts yet, but we're only getting started
with our iOS development career, right?

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adios4/code/navigation/PragmaticPodcasts-10-1/PragmaticPodcasts/EpisodeListViewController.swift
http://pragprog.com/titles/adios4
http://forums.pragprog.com/forums/adios4

