
Extracted from:

Ruby Performance Optimization
Why Ruby Is Slow, and How to Fix It

This PDF file contains pages extracted from Ruby Performance Optimization,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Ruby Performance Optimization
Why Ruby Is Slow, and How to Fix It

Alexander Dymo

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-069-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2015

https://pragprog.com
rights@pragprog.com

It’s time to optimize.

This is what I think when my Heroku dyno restarts after logging an “R14 -
Memory quota exceeded” message. Or when New Relic sends me another
bunch of Apdex score alerts. Or when simple pages take forever to load and
the customer complains that my application is too slow. I’m sure you’ve had
your own “time to optimize” moments. And every time these moments occur,
we both ask exactly the same question: “What can I do to make the code
faster?”

In my career as a Ruby programmer I have learned that the immediate answer
to this question is often “I don’t know.” I’ll bet that’s your experience, too.
After all, you thought you were writing efficient code. What we typically do
then is to skip optimization altogether and resort to caching and scaling.
Why? Because we don’t immediately see how to improve the code. Because
conventional wisdom says optimization is hard. And because caching and
scaling are familiar to seasoned Ruby developers. In most cases you only need
to configure some external tool and make minimal changes to the code, and
voilà! Your code is faster.

But there is a limit to what caching and scaling can do for you. One day my
company discovered that Hirefire, the automated scaling solution for Heroku,
scaled up the number of Heroku web dynos to 36 just to serve a meager five
requests per minute. We would have to pay $3,108 per month for that. And
our usual bill before was $228 for two web dynos and one worker. Whoa, why
did we have to pay almost fifteen times more? It turned out there were two
reasons for that. First, web traffic increased. Second, our recent changes in
the code made the application three times slower. And our traffic kept
increasing, which meant that we’d have to pay even more. Obviously, we
needed a different approach. This was a case where we hit a limit to scaling
and had to optimize.

It is also easy to hit a limit with caching. You can tell that you need to stop
caching when your cache key gets more and more granular.

Let me show you what I mean with a code snippet from a Rails application
of mine:

cache_key = [@org.id, @user.id,
current_project, current_sprint, current_date,
@user_filter, @status_filter,
@priority_filter, @severity_filter, @level_filter]

cache(cache_key.join("_")) do
render partial: 'list'

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

end

Here my cache key consists of ten parts. You can probably guess that the
likelihood of hitting such a granular cache is very low. This is exactly what
happened in reality. At some point my application started to spend more
resources (either memory for Memcached or disk space) for caching than for
rendering. Here’s a case where further caching would not increase performance
and I again had to optimize.

So have I convinced you of the need to optimize? Then let’s learn how.

Here’s when most sources on performance optimization start talking about
execution time, profilers, and measurements. The hard stuff. We’ll do our
own share of profiling and measuring, but let’s first step back and think about
what exactly we need to optimize. Once we understand what makes Ruby
slow, optimization stops being a search for a needle in a haystack with the
profiler. Instead it can become almost a pleasing task where you attack a
specific problem and get a significant performance improvement as the reward.

What Makes Ruby Code Slow
To learn what makes Ruby code fast, we must understand what makes Ruby
code slow.

If you’ve done any performance optimization in the past, you probably think
you know what makes code slow. You may think that even if you haven’t done
performance optimization. Let me see if I can guess what you think.

Your first guess is algorithmic complexity of the code: extra nested loops,
computations, that sort of stuff. And what would you do to fix the algorithmic
complexity? Well, you would profile the code, locate the slow section, identify
the reason for the slowness, and rewrite the code to avoid the bottleneck.
Rinse and repeat until fast.

Sounds like a good plan, right? However, it doesn’t always work for Ruby
code. Algorithmic complexity can be a major cause for performance problems.
But Ruby has another cause that developers often overlook.

Let me show you what I’m talking about. Let’s consider a simple example that
takes a two-dimensional array of strings and formats it as a CSV.

Let’s jump right in. Key in or download this simple program.

chp1/example_unoptimized.rb
require "benchmark"

num_rows = 100000

• 2

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adrpo/code/chp1/example_unoptimized.rb
http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

num_cols = 10
data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }

time = Benchmark.realtime do
csv = data.map { |row| row.join(",") }.join("\n")

end

puts time.round(2)

We’ll run the program and see how it performs. But before that we need to
set up the execution environment. There are five major Ruby versions in use
today: 1.8.7, 1.9.3, 2.0, 2.1, and 2.2. These versions have very different per-
formance characteristics. Ruby 1.8 is the oldest and the slowest of them, with
a different interpreter architecture and implementation. Ruby 1.9.3 and 2.0
are the current mainstream releases with similar performance. Ruby 2.1 and
2.2 are the only versions that were developed with performance in mind, at
least if we believe their release notes, and thus should be the fastest.

It’s hard to target old software platforms, so I’ll make a necessary simplification
in this book. I will neither write examples nor measure performance for Ruby
1.8. I do this because Ruby 1.8 is not only internally different, it’s also source-
incompatible, making my task extremely complicated. However, even if you
have a legacy system running Ruby 1.8 with no chance to upgrade, you can
still use the performance optimization advice from this book. Everything I
describe in the book applies to 1.8. In fact, you might even get more
improvement. The old interpreter is so inefficient that any little change can
make a big difference. In addition to that I will give 1.8-specific advice where
appropriate.

The easiest way to run several Rubys without messing up your system is to
use rbenv or rvm. I’ll use the former in this book. Get rbenv from https://github.com/
sstephenson/rbenv. Follow the installation instructions from README.md. Once you
install it, download the latest releases of Ruby versions that you’re interested
in. This is what I did; you may want to get more recent versions:

$ rbenv install -l
...
1.9.3-p551
2.0.0-p598
2.1.5
2.2.0
...

$ rbenv install -k 1.9.3-p551
$ rbenv install -k 2.0.0-p598
$ rbenv install -k 2.1.5
$ rbenv install -k 2.2.0

• Click HERE to purchase this book now. discuss

What Makes Ruby Code Slow • 3

https://github.com/sstephenson/rbenv
https://github.com/sstephenson/rbenv
http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

Note how I install Ruby interpreters with the k option. This keeps sources in
rbenv’s directory after compilation. In due time we’ll talk about the internal
Ruby architecture and implementation, and you might want to have a peek
at the source code. For now, just save it for the future.

To run your code under a specific Ruby version, use this:

$ rbenv versions
* system (set by /home/user/.rbenv/version)

1.9.3-p551
2.0.0-p598
2.1.5
2.2.0

$ rbenv shell 1.9.3-p551
$ ruby chp1/example_unoptimized.rb

To get a rough idea of how things perform, you can run examples just one
time. But you shouldn’t make comparisons or draw any conclusions based
on only one measurement. To do that, you need to obtain statistically correct
measurements. This involves running examples multiple times, statistically
post-processing the measurement results, eliminating external factors like
power management on most modern computers, and more. In short, it’s hard
to obtain truly meaningful measurement. We will talk about measurements
later in Chapter 7, Measure, on page ?. But for our present purposes, it is
fine if you run an example several times until you see the repeating pattern
in the numbers. I’ll do my measurements the right way, skipping any details
of the statistical analysis for now.

OK, so let’s get back to our example and actually run it:

$ rbenv shell 1.9.3-p551
$ ruby example_unoptimized.rb
9.18
$ rbenv shell 2.0.0-p598
$ ruby example_unoptimized.rb
11.42
$ rbenv shell 2.1.5
$ ruby example_unoptimized.rb
2.65
$ rbenv shell 2.2.0
$ ruby example_unoptimized.rb
2.43

Let’s organize the measurements in a tabular format for easy comparison.
Further in the book, I’ll skip the session printouts and will just include the
comparison tables.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

2.22.12.01.9.3

2.432.6511.429.18Execution time

What? Concatenating 100,000 rows, 10 columns each, takes up to 10 seconds?
That’s way too much. Ruby 2.1 and 2.2 are better, but still take too long. Why
is our simple program so slow?

Let’s look at our code one more time. It seems like an idiomatic Ruby one-
liner that is internally just a loop with a nested loop. The algorithmic efficiency
of this code is going to be O(n m) no matter what. So the question is, what
can we optimize?

I’ll give you a hint. Run this program with garbage collection disabled. For
that just add a GC.disable statement before the benchmark block like this:

chp1/example_no_gc.rb
require "benchmark"

num_rows = 100000
num_cols = 10
data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }

GC.disable
time = Benchmark.realtime do

csv = data.map { |row| row.join(",") }.join("\n")
end

puts time.round(2)

Now let’s run this and compare our measurements with the original program.

2.22.12.01.9.3

2.432.6511.429.18GC enabled

1.161.191.151.14GC disabled

52%55%90%88%% of time spent in GC

Do you see why the code is so slow? Our program spends the majority of its
execution time in the garbage collector—a whopping 90% of the time in older
Rubys and a significant 50% of the time in modern versions.

I started my career as C++ developer. That’s why I was stunned when I first
realized how much time Ruby GC takes. This surprises even seasoned
developers who have worked with garbage-collected languages like Java and
C#. Ruby GC takes as much time as our code itself or more. Yes, Ruby 2.1
and later perform much better. But even they require half the execution time
for garbage collection in our example.

• Click HERE to purchase this book now. discuss

What Makes Ruby Code Slow • 5

http://media.pragprog.com/titles/adrpo/code/chp1/example_no_gc.rb
http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

What’s the deal with the Ruby GC? Did our code use too much memory? Is
the Ruby GC too slow? The answer is a resounding yes to both questions.

High memory consumption is intrinsic to Ruby. It’s a side effect of the language
design. “Everything is an object” means that programs need extra memory to
represent data as Ruby objects. Also, slow garbage collection is a well-known
historical problem with Ruby. Its mark-and-sweep, stop-the-world GC is not
only the slowest known garbage collection algorithm. It also has to stop the
application for the time GC is running. That’s why our application takes
almost a dozen seconds to complete.

You have surely noticed significant performance improvement with Ruby 2.1
and 2.2. These versions feature much improved GC, called restricted genera-
tional GC. We’ll talk about what that means later in Chapter 10, Tune Up the
Garbage Collector, on page ?. For now it’s important to remember that the
latest two Ruby releases are much faster thanks to the better GC.

High GC times are surprising to the uninitiated. Less surprising, but still
important, is the fact that without GC all Ruby versions perform the same,
finishing in about 1.15 seconds. Internally the Ruby VMs are not that different
across the versions starting from 1.9. The biggest improvement relevant to
performance is the restricted generational GC that came with Ruby 2.1. But
that, of course, has no effect on code performance when GC is disabled.

If you’re a Ruby 1.8 user, you shouldn’t expect to get the performance of 1.9
and later, even with GC turned off. Modern Rubys have a virtual machine to
execute precompiled code. Ruby 1.8 executes code in a much slower fashion
by traversing the syntax tree.

OK, let’s get back to our example and think about why GC took so much time.
What did it do? Well, we know that the more memory we use, the longer GC
takes to complete. So we must have allocated a lot of memory, right? Let’s
see how much by printing memory size before and after our benchmark. The
way to do this is to print the process’s RSS, or Resident Set Size, which is
the portion of a process’s memory that’s held in RAM.

On Linux and Mac OS X you can get RSS from the ps command:

puts "%dM" % `ps -o rss= -p #{Process.pid}`.to_i

On Windows your best bet is to use the OS.rss function from the OS gem,
https://github.com/rdp/os. The gem is outdated and unmaintained, but it still should
work for you.

chp1/example_measure_memory.rb
require "benchmark"

• 6

• Click HERE to purchase this book now. discuss

https://github.com/rdp/os
http://media.pragprog.com/titles/adrpo/code/chp1/example_measure_memory.rb
http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

num_rows = 100000
num_cols = 10
data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }

puts "%d MB" % (`ps -o rss= -p #{Process.pid}`.to_i/1024)➤

GC.disable
time = Benchmark.realtime do

csv = data.map { |row| row.join(",") }.join("\n")
end

puts "%d MB" % (`ps -o rss= -p #{Process.pid}`.to_i/1024)➤

puts time.round(2)

$ rbenv shell 2.2.0
$ ruby example_measure_memory.rb
1040 MB
2958 MB

Aha. Things are getting more and more interesting. Our initial dataset is
roughly 1 gigabyte. Here and later in this book when I write kB I mean 1024
bytes, MB - 1024 * 1024 bytes, GB - 1024 * 1024 * 1024 bytes (yes, I know,
it’s old school). So, we consumed 2 extra gigabytes of memory to process that
1 GB of data. Your gut feeling is that it should have taken only 1 GB extra.
Instead we took 2 GB. No wonder GC has a lot of work to do!

You probably have a bunch of questions already. Why did the program need
2 GB instead of 1 GB? How do we deal with this? Is there a way for our code
to use less memory? The answers are in the next section, but first let’s review
what we’ve learned so far.

Takeaways
• Memory consumption and garbage collection are among the major reasons

why Ruby is slow.

• Ruby has a significant memory overhead.

• GC in Ruby 2.1 and later is up to five times faster than in earlier versions.

• The raw performance of all modern Ruby interpreters is about the same.

• Click HERE to purchase this book now. discuss

What Makes Ruby Code Slow • 7

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

