Extracted from:

Learn to Program with
Minecraft Plugins

Create Flying Creepers and Flaming Cows in Java

This PDF file contains pages extracted from Learn to Program with Minecraft Plugins,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

The
Pragmatic
Ogramimers

Learn to Program
with Minecraft Plugins

Create Flying Creepers
and Flaming Cows in Java

4
- g
iy A

4
o .
! SRy =
. N IY [
487 ALl i
s = .,\u

Learn to Program with
Minecraft Plugins

Create Flying Creepers and Flaming Cows in Java

Andy Hunt

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Minecraft is ®, ™, and © 2009-2014 Mojang/Notch.

The team that produced this book includes:

Brian Hogan (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-78-9

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2014

http://pragprog.com
rights@pragprog.com

CHAPTER 6

Add a Chat Command,
Locations, and Targets

In this chapter we’ll look at how plugins are constructed, and add these abilities to
your toolbox:

¢ Add a command to a plugin by checking for that string in onCommand and adding
the command code

¢ Add new command descriptions to plugin.yml

e Work with Minecraft coordinates (Location)

¢ Find nearby blocks or entities (Blocklterator)

.
How Does Minecraft Know About Your Plugin?

We've been using a bunch of objects in the Minecraft code. For example, you
know that a player is represented as a Player object and the server is a Server
object.

So it shouldn’t be too surprising to realize that our plugins are, in fact, Plugin
objects. Bukkit has kindly defined a basic “recipe,” a basic Plugin class that it
knows about. Our job, as plugin writers, is to provide our own plugin code
that fits into that framework.

As we've seen, the first line of a plugin declares the plugin’s name and then
adds the magical phrase extends JavaPlugin:

import org.bukkit.plugin.java.JavaPlugin;

public class MyFavoritePlugin extends JavaPlugin {

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine
http://forums.pragprog.com/forums/ahmine

°6

That makes JavaPlugin a parent of your class MyFavoritePlugin, just like the examples
in the last chapter.

The Minecraft server already knows how to work with a JavaPlugin, and since
that’s your plugin’s parent, it now knows how to work with your plugin—even
though your plugin didn’t exist when Minecraft was created. It's counting on
the fact that you’ll write a couple of functions that it knows how to call.

In addition to the plugin code itself, Minecraft needs a configuration file for
the plugin, named plugin.yml. You saw a description of this back on page ?,

while we were building plugins the first time. It tells the server which com-
mands your plugin will handle.

With that configuration file and your code, the Minecraft server can run your
plugin just like any other part of the game.

Plugin: SkyCmd

We're going to create a brand-new plugin called SkyCmd. In it, we’ll create a
command named sky that will teleport all nearby creatures (not players) fifty
blocks up into the air. Very handy at night with skeletons and creepers about.

In the SkyCmd directory, plugin.yml has an entry for our new command, /sky.
Here’s the whole source file to the plugin:

SkyCmd/src/skycmd/SkyCmd.java
package skycmd;

import java.util.logging.Logger;

import org.bukkit.Location;

import org.bukkit.command.Command;

import org.bukkit.command.CommandSender;
import org.bukkit.entity.Player;

import org.bukkit.plugin.Plugin;

import org.bukkit.plugin.java.JavaPlugin;
import org.bukkit.entity.Entity;

import java.util.List;

public class SkyCmd extends JavaPlugin {

public boolean onCommand(CommandSender sender, Command command,
String commandLabel, String[] args) {
(1) if (commandLabel.equalsIgnoreCase("sky")) {
(2] if (sender instanceof Player) {
(3] Player me = (Player)sender;
List<Entity> list = me.getNearbyEntities(50,50,50);
for (Entity target : list) {
if (!(target instanceof Player)) {
Location loc = target.getLocation();

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ahmine/code/SkyCmd/src/skycmd/SkyCmd.java
http://pragprog.com/titles/ahmine
http://forums.pragprog.com/forums/ahmine

Handle Chat Commands ® 7

double y = loc.getY();
loc.setY(y+50);
target.teleport(loc);
}
}

return true;
}
}

return false;
}
}

Compare this to our original, very simple HelloWorld.java file. Notice right at the
top, the package statement and later the public class statement now each refer
to SkyCmd instead of HelloWorld.

Let’s take a closer look at how a plugin handles a chat command like /sky.

Handle Chat Commands

When the player types a command, your onCommand method will be called.

The player's command is passed to you in a string, which we've named
commandLabel. So the first thing you need to do is check and see if the command
the player typed is the one you want. How do you check to see if strings are
equal? Down on the line at @ we’ll use the string’s function equalsignoreCase to
check if the player typed "sky". (Remember, you can’t use == on strings; you
have to use either equals or equalsignoreCase, and most of the time you want to
ignore the case, so "sky" will match "Sky", "SKY", and even "skKy".)

If we got a match for "sky", then we’ll execute this next code block, in between
the braces—{ and }.

The next thing we need to check is a little awkward; it turns out that the
CommandSender that gets passed to us here may not be a Player. It could be a
Player object, but it could be a Console instead, or who knows what else. We
want to make sure it’s really a Player, so we’ll check for that explicitly at @,
using the Java keyword instanceof. This tests to see if the thing passed in is
really a Player. If it is, then we’re going to do the bulk of the command starting

at ©.

This begins with another bit of magic, just like we saw with parent/child
recipes at the end of Chapter 5, Plugins Have Objects, on page ?. Now that
we've confirmed the variable sender is really of type Player (not just a Command-
Sender or any other parent or child), we can convert it to the type Player, using

a cast operator.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine
http://forums.pragprog.com/forums/ahmine

°8

So the expression (Player) sender returns the variable sender, converted with a
cast operator to the type Player so you can assign it to the variable me. It sounds
messy, and it is a bit, but it’s also something you can just copy and paste,
as we’ll be using this little recipe in almost every command plugin to get a
Player object.

Now that we have a real Player object referenced by me, we can get the list of
all nearby entities with me.getNearbyEntities(50,50,50);, which will get us all the
entities within fifty blocks of us and return all of these entities in a List that
we'll go through with a for loop.

We'll go over the details of lists in the next chapter, but first we’ll look at how
Location objects work. In this case, we're setting the variable target to each entry
in the list of nearby entities as we go through the for loop. If the target is not
a fellow player, then we want to fling it skyward, which we do by changing
its location.

Location objects are important—that’s how you get and set the coordinates of
anything in Minecraft. Here’s how we’ll manipulate locations to fling the
creatures up in the air.

Use Minecraft Coordinates

A Location stores three coordinates: x, y, and z, as the following figure shows.

A

+high (255)

Sea level (64)

-low(0)

-west

X

+east

Figure 6—Minecraft coordinate system

The x value goes west (negative) to east (positive), the z coordinate goes north
(negative) to south (positive), and y goes down (negative) to up (positive), with
a y value of O being the bottom layer of bedrock, and 64 being sea level. That

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine
http://forums.pragprog.com/forums/ahmine

Use Minecraft Coordinates ® 9

means that to make a player or other entity fly up in the air, you need to add
some to the y value.

We'll get each target’s current y value from loc and save it as y. Next we’ll
change the value in loc by adding 50. Here’s the fun part: by calling target.tele-
port(loc) we tell the target to teleport itself to this new location. Finally, we
return true to indicate that this was our command and that we executed it
successfully.

Notice that if the caller wasn’t a Player, or if the command typed wasn’t "sky",
we return false, indicating it wasn’t our plugin’s command.

Whew! That’s a lot of stuff in a few lines of code. But give it a shot and compile
and install it using build.sh just like we’ve been doing;:

$ cd Desktop
$ cd code/SkyCmd
$./build.sh

Stop and restart your server, and try out the new command /sky for fun. Make
sure you are in survival mode instead of creative mode,' and wait for night
to fall and the creepers to come....

1. In the Minecraft game, you can do this by typing /gamemode c for creative or /gamemode
s for survival.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine
http://forums.pragprog.com/forums/ahmine

