
Extracted from:

Learn to Program with
Minecraft Plugins,

2nd Edition
Create Flaming Cows in Java

Using CanaryMod

This PDF file contains pages extracted from Learn to Program with Minecraft Plu-
gins, 2 Edition , published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Learn to Program with
Minecraft Plugins,

2nd Edition
Create Flaming Cows in Java

Using CanaryMod

Andy Hunt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian Hogan (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-94-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2014

http://pragprog.com
rights@pragprog.com

CHAPTER 3

After completing this chapter you’ll know how to

• Compile Java source code to .class files, pack them in a jar, and
install them on a Minecraft server

• Run your local server with a new plugin
• Connect to your local server

Build and Install a Plugin
Now that you have the tools installed, we’ll build a simple, basic plugin. It
won’t do much as plugins go, but it will make sure you can build and run
your own plugins, and it will act as starting point (or skeleton) for all the
plugins we’ll write in this book.

So how do your typed-in instructions end up running on a Minecraft server?
Here’s how the whole process works.

You type Java language instructions (we call that “source code”) and save
them into a text file, and then the Java compiler, javac, reads your text file
and converts it into something the computer can run.

You went through this process already with the simple CreeperTest.java program
you typed in previously.

For the source code you type into a file named CreeperTest.java you’ll get a
binary (not text) file named CreeperTest.class. A binary file is just a file of numbers
—it makes sense to the computer, but not to humans.

Because a typical program might use lots and lots of class files, you usually
archive a bunch of class files into a jar file, and Java runs the code from the
jar.

Java (the java program itself) reads class files and jar files to create a running
process on the computer. With Minecraft, this will be the server process that
your Minecraft clients connect to. For now, the only client will be you.

The following figure shows how these parts all fit together. The javac compiler
takes your Java source code, and definitions it finds in CanaryMod.jar, and pro-
duces a class file. That class file gets packed up with the Canary.inf file into a
jar that is your plugin. Then at runtime, Java starts the server from CanaryMod.jar
and loads your plugin from its jar.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

In the Java world, you have to place all these files in specific places for
this all to work. We made a directory structure like that earlier, all ready
for your version of the HelloWorld plugin. I’ve also got a complete plugin all
set up for you in the HelloWorld directory in the code for this book, which
you downloaded to Desktop/code/HelloWorld.

So in Desktop/code/HelloWorld, you’ll find a directory tree for the source code,
under src. You’ll also see a bin directory where the compiled class files are
created, and a dist directory where the class file and configuration files are
packed together into a jar file. When you’re ready to share your plugin
with others, you’ll give them the jar.

HelloWorld is one development directory. You’ll probably have one of these
for each plugin you develop, each with its own src, bin, dist, and so on.

Then over in your server directory at Desktop/server, you have the Minecraft
server files, including CanaryMod.jar, which contains all the bits you need to
run the game, as well as the parts we’re using to develop code in the
Minecraft worlds.

Chapter 3. Build and Install a Plugin • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

Also in server, there’s a directory for plugins that the Minecraft server will
use when it runs, and the lib directory (we’ll use that at the end of this
chapter for our EZPlugin library).

When working on code in the development directory, the last step once
you’re ready to test it out in a server is to copy the jar file up to the server’s
plugin directory (see the following figure).

We’ll see how to do that automatically in just a second.

Java tends to use paths and configuration files to specify where all these
files and directories live. It can get a little tricky at times, as there are a
lot of moving parts, and it’s frustrating when Java can’t find some critical
file that is sitting right there in front of you. Just because you know where
a file is doesn’t mean Java knows.

Now let’s look at the source code, then cover how to build and install it.

Plugin: HelloWorld
It’s a long-held tradition in the programming world to start off with a
simple test program that prints out the message “Hello, World.” So we’ll
start off by building and running an existing plugin that does that in
Minecraft—except we’ll send out a slightly more interesting message.

• Click HERE to purchase this book now. discuss

Plugin: HelloWorld • 7

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

Here is the Java source code for our HelloWorld plugin, which is already typed
in for you in the file ~/Desktop/code/HelloWorld/src/helloworld/HelloWorld.java. There’s a
lot of weird stuff in here. (If you haven’t downloaded the code for this book to
your Desktop yet, grab it now from http://media.pragprog.com/titles/ahmine2/code/
ahmine2-code.zip. You can use unzip from the command line to unpack the archive
and create all the files.)

HelloWorld/src/helloworld/HelloWorld.java
package helloworld;❶
import net.canarymod.plugin.Plugin;❷
import net.canarymod.logger.Logman;
import net.canarymod.Canary;
import net.canarymod.commandsys.*;
import net.canarymod.chat.MessageReceiver;

public class HelloWorld extends Plugin implements CommandListener {❸

public static Logman logger;

public HelloWorld() {
logger = getLogman();

}

@Override
public boolean enable() {

logger.info("Starting up");
try {
Canary.commands().registerCommands(this, this, false);

} catch (CommandDependencyException e) {
logger.error("Duplicate command name");

}
return true;

}

@Override
public void disable() {
}

@Command(aliases = { "hello" },❹
description = "Displays the hello world message.",
permissions = { "" },
toolTip = "/hello")

public void helloCommand(MessageReceiver caller, String[] parameters) {❺
String msg = "That'sss a very niccce EVERYTHING you have there...";
Canary.instance().getServer().broadcastMessage(msg);

}
}

Chapter 3. Build and Install a Plugin • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip
http://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip
http://media.pragprog.com/titles/ahmine2/code/HelloWorld/src/helloworld/HelloWorld.java
http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

Don’t be discouraged if this looks like space-alien speech or Elvish right now.
We’ll make sense out of it over the next several chapters. Instead focus on
what is familiar: there are some English words in there, like “import” and
“public” and “return,” and what might be sentences or statements of some
kind, which all end with semicolons (“;”). There are also some strange charac-
ters like “{” and “}” that seem to be important.

What does it all mean? Well, this plugin implements a user command, /hello,
which will broadcast the traditional creeper greeting, “That’sss a very niccce
EVERYTHING you have there…” to all online players in Minecraft.

Notice that the name of this plugin is declared as public class HelloWorld on the
line at ❸. That’s the same name as the file name that contains this code:
HelloWorld.java. This piece of code is also set up to be in a package—that is, a
group of related files—using the same name on the line at ❶. The package
name is all lowercase, and it’s also the directory name where our Java source
code file lives, under src/ in helloworld/HelloWorld.java.

It’s important that the names in all of these places match; a typo on one of
them can lead to strange errors.

You use import statements (you’ll see these beginning on the line at ❷) to get
access to other things that you need in your plugin, like parts of the Canary
library and other Java libraries. If you forget to include an import for something
you need, you’ll get an error that says “cannot find symbol” because Java
doesn’t know what you mean. For your convenience, I’ve included a list of all
the imports we’re using in Appendix 7, Common Imports, on page ?.

The code for our plugin starts at ❸, and there’s this funny @Command annota-
tion (a kind of a tag, not actual code) at ❹ that describes the command itself.
Finally, the code for that command starts at ❺.

We’ll look at all that and more later, but first, we need to let the server know
that we’ve got a plugin for it to load.

Configure with Canary.inf
This source code alone isn’t enough; you also need a configuration file so that
Minecraft can find and launch your plugin. The configuration file is named
Canary.inf and looks like this:

HelloWorld/Canary.inf
main-class = helloworld.HelloWorld
name = HelloWorld
author = AndyHunt, Learn to Program with Minecraft Plugins
version = 1.0

• Click HERE to purchase this book now. discuss

Configure with Canary.inf • 9

http://media.pragprog.com/titles/ahmine2/code/HelloWorld/Canary.inf
http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

Here’s a description of what this file needs. Don’t worry much about the details
yet—it will make more sense as we get further into the book.

main-class
Name of the package and class that Java will run to start this plugin
(package.classname).

name
Name of the plugin—in this case, HelloWorld.

author
Name of the author (that’s you).

version
Version number of your plugin. Start low, and increment the number
each time you release a new version to the world.

Build and Install with build.sh
The commands you’ve been typing in your terminal window can also be saved
into a file; that way you can run them over and over again without having to
retype them each time. We call this a shell script, and it’s another way to
program the computer.

Building a plugin is only a little more complicated than compiling a single
Java file as we did last chapter, but even so, it involves a lot of commands
we don’t want to have to type out every time.

To make it easier, I’ve made a shell script for you named build.sh that will do
the three main steps:1

1. Use javac to compile the .java source to .class files.
2. Use jar to archive the class files, manifest, and configuration file.
3. Copy the jar file to the server.

After that, you’ll need to stop and restart the server so it can pick up the
changes.

The build script needs to know where your server directory is located. At the
very top of the script, it says this:

MCSERVER=$HOME/Desktop/server

1. For larger projects, folks use tools like Ant, Maven, or Gradle when the build becomes
more complex and has to manage dependencies among many parts. But that’s overkill
for our needs here.

Chapter 3. Build and Install a Plugin • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

For most people that should just work if your server directory is located on
your Desktop. If that doesn’t work, you’ll need to edit the build.sh file and
change that directory so that the MCSERVER= points to your local Minecraft
server directory. That MCSERVER= setting is how the script knows where to find
the server.

Change your current directory to the HelloWorld directory. From there, run the
build.sh script (this is what we’ll do for each plugin from now on):

$ cd
$ cd Desktop
$ cd code/HelloWorld
$./build.sh

(Remember, no matter how you actually get to your Desktop, I’ll just show it
as cdDesktop from now on for reference. You may need to do a cd~/Desktop or start
at your home directory and go down, depending on your particular system.)

You should see results that look a lot like this:

Compiling with javac...
Creating jar file...
Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Check to see that the file really was installed in the server directory:

$ cd Desktop
$ cd server/plugins
$ ls
HelloWorld.jar

Yup, the jar file is in the server directory. Success!

If you get errors, here are a few things to check:

• If you get the error ./build.sh: Permission denied you might need to type chmod
+x build.sh to give the script executable permission.

• If you’re seeing syntax errors, make sure you are using a fresh copy of
the files downloaded from this book’s website, with no local modifications.

• If everything compiles okay but you get an error trying to copy the jar file,
make sure the server directory is correct.

If the script is having trouble finding the server directory, edit build.sh and change
the MCSERVER= directory name to the correct location of your Minecraft server.2

2. Make sure it’s spelled correctly and starts with a “/” character so that you have the full
path to your server starting at the root directory.

• Click HERE to purchase this book now. discuss

Build and Install with build.sh • 11

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

(If you have to change it here, you may need to do the same thing for each new
plugin’s build script as we go along).

Once it compiles and installs, you are excellent! Now you have a compiled
plugin, ready for the Minecraft server to use.

If your server is still running, it won’t know about this new plugin. You have
to stop it and then restart it.

> stop
[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Stopping server
[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Saving players
[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Saving worlds
[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Saving chunks

for level 'default'/Overworld
[14:36:24] [CanaryMod] [INFO]: Disabling Plugins ...
$./start_minecraft
08:47:32 [INFO] [HelloWorld] Loading HelloWorld v0.1
08:47:32 [INFO] [HelloWorld] Loaded.
08:47:32 [INFO] [HelloWorld] Enabling HelloWorld v0.1
08:47:32 [INFO] [HelloWorld] Starting up.
08:47:32 [INFO] Server permissions file permissions.yml is empty, ignoring it
08:47:32 [INFO] CONSOLE: Reload complete.
>

And there’s the startup message from our new HelloWorld plugin. If you don’t
see any message from HelloWorld starting up, then your Minecraft server can’t
find it. Make sure the HelloWorld.jar file is in the server’s plugins directory, stop
the server, and try starting it up again.

Once you’re connected and in the Minecraft world, you can test out your fine
new command from the client chat window. In the Minecraft game, just start
typing /hello and see what happens. As soon as you type the “/” character,
you’ll see that you’re typing in a chat window at the bottom of the screen.
Press Return and…

…you should see our message appear in the server log console and in the
game window. This is what it looks like in the server console:

14:47:58 [INFO]: Command used by AndyHunt: /hello
14:47:58 [INFO]: That'sss a very niccce EVERYTHING you have there...

And here’s what it looks like in the game window:

Chapter 3. Build and Install a Plugin • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

Getting Around in Minecraft

In case you aren’t familiar with the Minecraft graphical user interface (GUI), here are
a couple of quick tips. You can check out some of the many YouTube tutorials or
official docs for more.

The keys W , A , S , and D move you forward, left, backward, and right, respectively.
Use the Spacebar to jump.

Use the mouse to control the direction you are facing.

You “hit” things with your left mouse button—for example, to strike with a sword or
dig with a pickaxe or shovel.

You “use” items with your right mouse button—for example, placing an item or
opening a door.

You type commands to Minecraft with a leading “/” character. You can change the
game to creative mode with /gamemode c, and back to survival mode with /gamemode s.

Using EZPlugin
As we go through the book, we’ll talk more about the Java language, and
explain what all the bits and pieces in HelloWorld.java actually do. But about
half of this code isn’t really important to us right now. What’s more, it’s always
going to be exactly the same for each plugin we use. We’re going to move it
out of the way so you won’t have to keep looking at it in every single plugin
that we work with.

• Click HERE to purchase this book now. discuss

Using EZPlugin • 13

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

In the downloaded code, I’ve included a special library called EZPlugin. I moved
all the stuff that’s going to be the same for all plugins into EZPlugin.java. That’s
going to make our next plugins much smaller and easier to read.

All of the other plugins (past HelloWorld) depend on EZPlugin, so we’ll need to
build it before we go on. The build process will install it in the server’s lib
(short for “library”) directory:

At your command line, change your current directory to the EZPlugin directory.
From there, run the build_lib.sh script. So for me, I can start anywhere and go
to my home directory, then I can cd down into Desktop, then code, then EZPlugin:

$ cd
$ cd Desktop
$ cd code/EZPlugin
$./build_lib.sh

You should see results that look a lot like this:

Compiling with javac...
Creating jar file...
Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Check to see that the file really was installed in the server’s lib directory:

$ cd Desktop
$ cd server/lib
$ ls
EZPlugin.jar

Once EZPlugin.jar is there, you won’t need to run build_lib.sh again. All the other
plugins can use it now.

Next, get rid of the first version of HelloWorld.jar, in the server’s plugins directory:

Chapter 3. Build and Install a Plugin • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

$ cd ../plugins
$ ls
HelloWorld.jar
$ rm HelloWorld.jar
$ ls
$

Now have a look at a much simpler version of HelloWorld, which uses EZPlugin,
and is located in code/HelloWorldEZ/src/helloworld/HelloWorld.java:

HelloWorldEZ/src/helloworld/HelloWorld.java
package helloworld;
import net.canarymod.plugin.Plugin;
import net.canarymod.logger.Logman;
import net.canarymod.Canary;
import net.canarymod.commandsys.*;
import net.canarymod.chat.MessageReceiver;
import com.pragprog.ahmine.ez.EZPlugin;

public class HelloWorld extends EZPlugin {
@Command(aliases = { "hello" },

description = "Displays the hello world message.",
permissions = { "" },
toolTip = "/hello")

public void helloCommand(MessageReceiver caller, String[] parameters) {
String msg = "That'sss a very niccce EVERYTHING you have there...";
Canary.instance().getServer().broadcastMessage(msg);

}
}

Notice that this just has a bunch of imports at the top, and then the command
business—the part we’re actually interested in—down at the bottom. This
will be the skeleton for all our upcoming plugins.

Go ahead and make sure you can build it, and that it can find the EZPlugin
library:

$ cd Desktop
$ cd code/HelloWorldEZ
$./build.sh

You should see the usual successful output:

Compiling with javac...
Creating jar file...
Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

If not, double-check that EZPlugin.jar is in Desktop/server/lib, and go back into
EZPlugin.jar and rebuild it if needed.

• Click HERE to purchase this book now. discuss

Using EZPlugin • 15

http://media.pragprog.com/titles/ahmine2/code/HelloWorldEZ/src/helloworld/HelloWorld.java
http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

Next Up
Congratulations! You just compiled and installed a plugin from source code,
installed it on your local server, connected, and tested it out! You then built
the EZPlugin library and installed it as well.

With that out of the way, we’ll spend the next few chapters taking a deeper
look at all the source code that makes a plugin, and see what makes Java
tick so you can make your own plugins.

Your Growing Toolbox

13%

You now know how to:
• Use the command-line shell
• Build with Java, javac
• Run a Minecraft server
• Deploy a plugin
• Connect to a local server

Chapter 3. Build and Install a Plugin • 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ahmine2
http://forums.pragprog.com/forums/ahmine2

