
Extracted from:

Pragmatic Ajax
A Web 2.0 Primer

This PDF file contains pages extracted from Pragmatic Ajax, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise
identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

YOUR OWN GOOGLE MAPS 11

The Real Rocket Science

OK, OK we admit—it isn’t easy to create something like Google
Maps. The geocoding features behind the scenes that map
addresses to locations on a map, that normalize a maps fea-
tures against satellite imagery to such an amazing degree that
they can be overlaid on top of each other and look relatively
accurate, and the plotting of routes from Point A to Point B are
all incredibly nontrivial.

However, we maintain that it’s not the geocoding features
of Google Maps that is particularly innovative or impressive.
MapQuest and other software packages have been doing this
kind of work for years. No, what’s impressive about Google
Maps is the web interface on top of the geocoding engine.
And it’s that interface that we find easy, not the geocoding
under the covers.

As our good friend Glenn Vanderburg says, though: “Techni-
cally it’s easy, but the conception of this kind of interface is
the really amazing part, just having the idea and then real-
izing that it could be done. So many things are simple once
you’ve seen that they’re possible.” The take-home lesson is that
Google Maps shows that once you have conceived of your
next great UI idea, you can take comfort in knowing that the
technical solution to implementing it might not be so daunting.

interface. (We should say, though, that we stand in awe of Lars Ras-

mussen and his team for being the brains and fingers behind Google

Maps.) The reality is if we can create an interface like Google Maps in

a couple of hours, imagine what a few capable web developers could do

in a few weeks or a month.

2.2 Your Own Google Maps

In fact, we’ll spare you from putting your imagination to the test. Let

us show you firsthand how you can create your own version of Google

Maps. In the next few pages, we’ll walk you through the creation of

Ajaxian Maps, our own derivative of the big GM. We’ll start out by

explaining how the Google Maps user interface works.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

YOUR OWN GOOGLE MAPS 12

Figure 2.1: Google Maps

Google Maps Deconstructed

We’re going to break down the elements of Google Maps one by one.

Let’s start out with the most dramatic feature: the big scrolling map,

the heart of the application.

The Map

As you know, the map works by allowing you to interactively move the

map by dragging the map using the mouse. We’ve seen mouse dragging

in browsers for years, but the impressive bit is that the scrolling map

is massive in size, can have the zoom level changed and so forth. How

do they do that?

Of course, the browser could never fit such a large map in memory at

once. For example, a street-level map of the entire world would prob-

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

YOUR OWN GOOGLE MAPS 13

More Than A Million Pixels

We say in “The Map” section that a street-level map of the
world would be about a million square pixels. Actually, that
number’s a wild underestimate. At Google’s highest level of
magnification, a square mile consumes about 7,700,000 pixels.
The Earth is estimated to contain 200,000,000 square miles, but
only 30% of that is land, so let’s reduce the number to 60,000,000
square miles.

Multiplying the number of pixels by the number of square miles
in the Earth produces the mind boggling number of 462 million
million pixels, which at 16.7 million colors (the color depth of
any modern home computer) would consume at least three
times that amount of memory in bytes. Of course, most image
viewing programs have some sort of paged memory subsystem
that views a portion of the image at any one time, but you get
the idea....

ably be about a million pixels square. How much memory would it

take to display that map? For the sake of conversation, let’s assume

that the map is displayed with just 256 colors, meaning each pixel

would consume just 1 byte of memory. Such a map would require

1,000,000,000,000 bytes of memory, or roughly 1 terabyte (1000 giga-

bytes) of RAM. So, simply displaying an element just isn’t going

to work.

What the Googlers do to work around the paltry amount of memory our

desktop PCs have is split up the map into various tiles. These tiles are

laid out contiguously to form one cohesive image. Figure 2.2, on the

next page, shows an example of these tiles. While the size of these tiles

has changed, the current size is 250 pixels square.

The tiles themselves are all laid out within a single HTML div element,

and this div element is contained within another div; we’ll call these

two divs the inner and outer divs, respectively.

We mentioned just a moment ago that the browser couldn’t fit the entire

map image in memory. Of course, dividing a single map into an arbi-

trary number of tiles and then displaying all those tiles at once would

consume an equal amount of memory as the entire image. To compen-

sate for memory limitations, Google Maps virtualizes the grid of tiles

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

YOUR OWN GOOGLE MAPS 14

Figure 2.2: Google Maps Tiles

in memory and displays only the set of tiles that the user can see, in

addition to a few additional tiles outside of the viewing area to keep the

scrolling smooth.

If this whole grid virtualization mishmash sounds a little complex, don’t

worry; it’s fairly straightforward, though it is the most complicated bit

of the UI.

Zoom Level

Another key feature of Google Maps is the ability to zoom in and out,

enlarging or reducing the size of the map, which lets you get a view

of the entire world at one moment and a view of your street the next.

This is actually the simplest of the features to implement. Changing

the zoom level just changes the size of the tile grid in memory as well

as the URLs of the tile images that are requested.

For example, the URL to one of the tiles in Figure 2.2 is as follows:

http://mt.google.com/mt?v=w2.5&n=404&x=4825&y=6150&zoom=3

By changing the value of the zoom parameter to another value, such as

1, you can retrieve a tile at a different zoom level. In practice, it’s not

quite that simple because the grid coordinates change rather a great

deal with each zoom level and they often become invalid.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

YOUR OWN GOOGLE MAPS 15

Figure 2.3: The Google Maps Push Pin and Dialog

How do they get the zoom level to constantly hover over the map in

a constant position? The zoom level widget is an image embedded in

the outer div, and makes use of transparency to blend in with the map

image.

Push Pins and Dialogs

Other neat-o features are the push pins and dialogs that appear after

a search. Figure 2.3 shows these elements. These are especially cool

because they both include rounded edges and shadows that make them

blend in with the background map in a sophisticated fashion.

We said the zoom level was the easiest feature, and frankly, we were

probably wrong. This is ridiculously easy. The push pins and dialogs

are simply a PNG image. The PNG image format is supported by the

major browsers and supports a nice feature called alpha transparency. alpha transparency

Alpha transparency allows for more than just the simple transparency

that GIF images support; it allows a pixel to be one of 254 different

values between fully transparent and fully opaque, and it’s this gradient

transparency support that allows the push pins and dialog to use a

shadow that blends in with the map.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 16

Showing these features is simply a matter of positioning images in the

inner div at an absolute position.

Feature Review

There are other features, of course. But we’ll stick to the set of features

we’ve enumerated; we think these represent the vast majority of the

“ooh, ahh” factors. In review, they were as follows:

• The scrolling map: This is implemented as an outer div containing

an inner div. Mouse listeners allow the inner div to be moved

within the confines of the outer div. Tiles are displayed as img

elements inside the inner div, but only those tiles necessary to

display the viewing area and a buffer area around it are present

in the inner div.

• The zoom level: This is an image embedded in the outer div. When

clicked, it changes the size of the grid representing the tiles and

changes the URL used to request the tiles.

• The push pins and dialogs: These are PNG images with alpha

transparency, placed in absolute positions within the inner div.

Now that we’ve deconstructed Google Maps a bit, let’s set about imple-

menting it.

2.3 Creating Ajaxian Maps

Because Ajaxian Maps won’t bother with all of that geocoding mumbo

jumbo, all of our heavy lifting will be in JavaScript. However, we will

use Java to provide some server features and a few image manipulation

tasks.

IE 6, Firefox 1.x, and Safari 2.x Only

We’ve tested this version of Ajaxian Maps in the three major browsers

but haven’t bothered with older versions and more obscure browsers

(sorry, Opera users). It should work on older platforms, but without

testing, we can’t be sure we’ve caught everything.

Step 1: Create a Map

The first step in displaying a map is, err, creating it. While we could

simply steal the wonderful map that Google Maps uses, Google might

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 17

not appreciate that. So, we’ll go ahead and use a map that is explic-

itly open source. The Batik project (http://xml.apache.org/batik), an open-

source Java-based SVG renderer, comes with an SVG map of Spain.

We’ll use that.

Because most browsers don’t provide native support for SVG, we’ll need

to convert the map to a bitmap-based format. Fortunately, Batik can

do that for us. One of the nice features of SVG is that it can scale to

arbitrary sizes, so we could conceivably create a huge image for our

map. However, creating truly huge images is a little tricky; because

of memory limitations, we’d have to render portions of the SVG image,

generate our tiles over the portions, and have some sort of scheme for

unifying everything together. To keep this chapter simple, we’ll just

limit our map to 2,000 pixels in width and 1,400 pixels in height. In

order to implement zooming, we’ll also generate a smaller image that

represents a view of the map in a zoomed-out mode.

The following code excerpt shows how to use Batik to convert the map

of Spain into both a 2000x1400 pixel JPG file and a 1500x1050 pixel

JPG file:

File 31 package com.ajaxian.amaps;

import org.apache.batik.apps.rasterizer.DestinationType;

import org.apache.batik.apps.rasterizer.SVGConverter;

import java.io.File;

public class SVGSlicer {

private static final String BASE_DIR = "resources/";

public static void main(String[] args) throws Exception {

SVGConverter converter = new SVGConverter();

// width in pixels; height auto-calculated

converter.setWidth(2000);

converter.setSources(new String[] { BASE_DIR + "svg/mapSpain.svg" });

converter.setDst(new File(BASE_DIR + "tiles/mapSpain.jpg"));

converter.setDestinationType(DestinationType.JPEG);

converter.execute();

converter.setWidth(1500);

converter.setDst(new File(BASE_DIR + "tiles/mapSpain-smaller.jpg"));

converter.execute();

}

}

To compile the code, you’ll need to put the Batik JARs in your classpath

CLICK HERE to purchase this book now.

http://xml.apache.org/batik
http://media.pragprog.com/titles/ajax/code/GoogleMaps/src/com/ajaxian/amaps/SVGSlicer.java
http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 18

Figure 2.4: Batik’s SVG Spain Map

(everything in BATIK_HOME and BATIK_HOME/lib) and place the source code in

the following directory hierarchy: com/ajaxian/amaps. Figure 2.4 shows

what either map JPG file should look like. You can also replace the

value of the BASE_DIR variable with whatever is most convenient for you.

Step 2: Create the Tiles

Now that we have a map at two different zoom levels, we need to slice

it up into tiles. This is pretty easy with the nice image manipulation

libraries available in many programming languages. We’ll demonstrate

how to do that with Java here:

File 30 package com.ajaxian.amaps;

import org.apache.batik.apps.rasterizer.DestinationType;

import org.apache.batik.apps.rasterizer.SVGConverter;

import javax.imageio.ImageIO;

import java.io.File;

import java.awt.*;

import java.awt.image.BufferedImage;

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ajax/code/GoogleMaps/src/com/ajaxian/amaps/ImageTiler.java
http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 19

public class ImageTiler {

private static final String BASE_DIR = "resources/";

private static final int TILE_WIDTH = 100;

private static final int TILE_HEIGHT = 100;

public static void main(String[] args) throws Exception {

// create the tiles

String[][] sources = { { "tiles/mapSpain.jpg", "0" },

{"tiles/mapSpain-smaller.jpg", "1"} };

for (int i = 0; i < sources.length; i++) {

String[] source = sources[i];

BufferedImage bi = ImageIO.read(new File(BASE_DIR + source[0]));

int columns = bi.getWidth() / TILE_WIDTH;

int rows = bi.getHeight() / TILE_HEIGHT;

for (int x = 0; x < columns; x++) {

for (int y = 0; y < rows; y++) {

BufferedImage img = new BufferedImage(TILE_WIDTH, TILE_HEIGHT,

bi.getType());

Graphics2D newGraphics = (Graphics2D) img.getGraphics();

newGraphics.drawImage(bi, 0, 0, TILE_WIDTH, TILE_HEIGHT,

TILE_WIDTH * x, TILE_HEIGHT * y,

TILE_WIDTH * x + TILE_WIDTH,

TILE_HEIGHT * y + TILE_HEIGHT,

null);

ImageIO.write(img, "JPG", new File(BASE_DIR + "tiles/" +

"x" + x + "y" + y + "z" + source[1] + ".jpg"));

}

}

}

}

}

Note that to make things interesting, we made our tile size a bit smaller

than Google Maps: 100 pixels square. We chose x0y0z0.jpg as the naming

convention for the tiles, where the zeros are replaced with the x and y

grid coordinates (0-based) and the zoom level (0 or 1; 0 is for the bigger

of the two maps).

Step 3: Creating the Inner and Outer Divs

Now that we have the image tiles, we can start building our map UI.

We’ll start with a simple web page, shown here:

File 32 Line 1 <html>

- <head>

- <title>Ajaxian Maps</title>

- <style type="text/css">

5 h1 {

- font: 20pt sans-serif;

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 20

Figure 2.5: Humble Beginnings

- }

- #outerDiv {

- height: 600px;

10 width: 800px;

- border: 1px solid black;

- position: relative;

- overflow: hidden;

- }

15 </style>

- </head>

- <body>

- <p>

- <h1>Ajaxian Maps</h1>

20 </p>

- <div id="outerDiv">

- </div>

- </body>

- </html>

Figure 2.5 show this page. Pretty simple so far. Let’s get to the good

stuff. The div on line 21 will become what we’ve called the outer div.

The outer div is the visible window into the tiles and will be entirely

contained in the visible space within the browser. The inner div, on

the other hand, will contain all the tiles and be much larger than the

available visible space. Let’s start out by giving it an inner div with

some simple content:

File 33 <html>

<head>

<title>Ajaxian Maps</title>

<style type="text/css">

h1 {

font: 20pt sans-serif;

}

#outerDiv {

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 21

height: 600px;

width: 800px;

border: 1px solid black;

position: relative;

overflow: hidden;

}

#innerDiv {

position: relative;

left: 0px;

top: 0px;

}

</style>

</head>

<body>

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div id="innerDiv">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

</html>

Now we need to make the inner div large enough to contain all of the

image tiles. We could just set a style on the inner div to make it some

arbitrary size, as in <div style="width: 2000px; height: 1400px">, but

we’ll do this via JavaScript. Why? Well, because we’ll implement the

ability to change zoom levels a little later, we know we’ll have to change

the size of the inner div dynamically anyway, so we might as well start

out that way. We’ll use an onload JavaScript handler to initialize the

size of the inner div once we load the page. Check out the code:

File 34 <html>

<head>

<title>Ajaxian Maps</title>

<style type="text/css">

h1 {

font: 20pt sans-serif;

}

#outerDiv {

height: 600px;

width: 800px;

border: 1px solid black;

position: relative;

overflow: hidden;

}

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 22

#innerDiv {

position: relative;

left: 0px;

top: 0px;

}

</style>

<script type="text/javascript">

function init() {

setInnerDivSize('2000px', '1400px')

}

function setInnerDivSize(width, height) {

var innerDiv = document.getElementById("innerDiv")

innerDiv.style.width = width

innerDiv.style.height = height

}

</script>

</head>

<body onload="init()">

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div id="innerDiv">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

</html>

OK, now we’ve got an inner div big enough to display the tiles for the

largest of our two maps. Now we need to add the dragging functionality.

Step 4: Dragging the Map

We’ll implement dragging using three different mouse event listeners.

When the user clicks the mouse in the map area, we’ll use a listener to

indicate that a drag operation has started. Now, if the user moves the

mouse, we’ll use a listener to move the inner div along with the user’s

mouse movements to create the dragging effect. Finally, we’ll use a

listener to turn off the dragging operation when the mouse is released.

The following code demonstrates how we implemented the listeners:

File 35 // used to control moving the map div

var dragging = false;

var top;

var left;

var dragStartTop;

var dragStartLeft;

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step4.html
http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 23

function init() {

// make inner div big enough to display the map

setInnerDivSize('2000px', '1400px');

// wire up the mouse listeners to do dragging

var outerDiv = document.getElementById("outerDiv");

outerDiv.onmousedown = startMove;

outerDiv.onmousemove = processMove;

outerDiv.onmouseup = stopMove;

// necessary to enable dragging on IE

outerDiv.ondragstart = function() { return false; }

}

function startMove(event) {

// necessary for IE

if (!event) event = window.event;

dragStartLeft = event.clientX;

dragStartTop = event.clientY;

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "-moz-grab";

top = stripPx(innerDiv.style.top);

left = stripPx(innerDiv.style.left);

dragging = true;

return false;

}

function processMove(event) {

if (!event) event = window.event; // for IE

var innerDiv = document.getElementById("innerDiv");

if (dragging) {

innerDiv.style.top = top + (event.clientY - dragStartTop);

innerDiv.style.left = left + (event.clientX - dragStartLeft);

}

}

function stopMove() {

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "";

dragging = false;

}

function stripPx(value) {

if (value == "") return 0;

return parseFloat(value.substring(0, value.length - 2));

}

If you run the code at this point, you’ll now be able to drag that inner

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 24

<div> around.

Step 5: Displaying the Map Tiles

The next step requires us to populate our inner div with the map tiles.

Our approach to this will be fairly simple. The scrolling map effect

is achieved by moving an inner div inside of an outer div; therefore,

the tiles we need to display are calculated by determining the current

position of the inner div relative to the outer div and then working out

which tiles are visible in the portion of the inner div that is visible. We’ll

then add those tiles to the inner div.

It turns out implementing this behavior is not terribly difficult. We’ll

create the function checkTiles() to do all this and call it from within the

processMove() function. processMove() is called when the user drags the

map, so by calling it from within, we’ll be able to load our tiles as the

map moves. The following code excerpt shows how we’ve added these

elements to our JavaScript code; for now, checkTiles() is just stubbed out

with comments:

File 39 function processMove(event) {

if (!event) event = window.event; // for IE

var innerDiv = document.getElementById("innerDiv");

if (dragging) {

innerDiv.style.top = top + (event.clientY - dragStartTop);

innerDiv.style.left = left + (event.clientX - dragStartLeft);

}

checkTiles();

}

function checkTiles() {

// check which tiles should be visible in the inner div

// add each tile to the inner div, checking first to see

// if it has already been added

}

Now, let’s implement our stubbed-out checkTiles() function.

Calculating the Visible Tiles

Calculating the set of tiles that the user can see in the inner <div> is

fairly straightforward. To understand how this works, it will help to

visualize the inner div as a grid where each grid cell is a placeholder

of the tiles that we’ll load. Figure 2.6, on the following page illustrates

this concept.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5.html
http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 25

Figure 2.6: The Tile Grid

Because we can’t load all the tiles in the grid up front, we’ll need to

calculate which of these grid cells are visible and load the tiles needed

to fit into these cells. As Figure 2.6 shows, this is accomplished by

calculating which grid cells are visible within the viewport created by

the size of the outer div. In the figure, we see that nine cells are visible

across three rows. Note that those cells that are only partially visible

still count as being visible.

Let’s see how to implement all this behavior we just described. To make

things simple, we’ll encapsulate all of the code to figure out which tiles

are visible in a particular method, which we’ll call getVisibleTiles(). The

first thing we need to figure out in getVisibleTiles() is the position of the

inner div relative to the outer div. This is fairly easy:

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 26

function getVisibleTiles() {

var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);

var mapY = stripPx(innerDiv.style.top);

}

The stripPx() function, shown earlier, converts the string value returned

by innerDiv.style.left (such as 100px) to a numeric value (say, 100). Now,

we can divide these positions by the size of the tiles to work out the

starting row and column of the tiles. This is just two lines of code:

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;

var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

Note that we haven’t yet defined the tileSize variable; we’ll do that globally

(at the top of our JavaScript code), and you’ll see it when we show the

entire page in just a few paragraphs. (Or, you can see it now on the

following page.) The call to Math.floor() will round the quotient to an

integer, discarding the remainder (so 1.4 will be rounded down to 1).

This will cause partial tiles to be displayed. Math.abs() converts negative

values to a positive number, which in our case is necessary because the

inner div position will nearly always be negative to the outer div, and

because our tile columns/rows are always positive numbers. Finally,

we subtract 1 from the result to make our map load the tiles a touch

early for a smoother effect.

The final bit of calculation is to determine the number of rows and

columns visible in the viewport:

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;

var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

As with tileSize(), we’ll declare both viewportWidth and viewportHeight as global

variables and show that in just a bit. We use Math.ceil(), the opposite of

Math.floor() (so it rounds the quotient up regardless of the size of the

remainder), to ensure that if any portion of a column or row is visible,

we’ll display it. And, just as we subtracted 1 from the index of the tiles

in the previous lines, we’ll add 1 to the number of columns and rows to

make the scroll effect smooth.

We now have all the data we need to calculate all of the visible tiles

in the viewport plus, as we’ve discussed, a few around the edges that

aren’t immediately visible but will be shortly. Now we’ll build an array

that contains all of the tiles that need to be loaded. To build this array,

we’ll write two for loops, one nested inside the other, that each perform

an iteration for each column and row that is currently visible. Inside

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 27

each loop iteration, we’ll add the column and row number of each tile

to display:

var visibleTileArray = [];

var counter = 0;

for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {

visibleTileArray[counter++] = [x, y];

}

}

return visibleTileArray;

Note that we’re actually creating a two-dimensional array; the value of

each item in our array is another array. We did this because we need

to pass back two values: the column and row index. And now, we’re

done calculating the tiles that are visible in the inner div, and we can

move on and work on the code to actually display them. But first, let’s

review all of the code we’ve written so far:

File 36 function checkTiles() {

// check which tiles should be visible in the inner div

var visibleTiles = getVisibleTiles();

// add each tile to the inner div, checking first to see

// if it has already been added

}

function getVisibleTiles() {

var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);

var mapY = stripPx(innerDiv.style.top);

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;

var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;

var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

var visibleTileArray = [];

var counter = 0;

for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {

visibleTileArray[counter++] = [x, y];

}

}

return visibleTileArray;

}

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

CREATING AJAXIAN MAPS 28

Displaying the Visible Tiles

We’ve now coded half of the checkTiles() function, which as you may recall

is the function responsible for both calculating the visible tiles and dis-

playing them. Now, let’s implement the other half of that function:

displaying the tiles.

All we need to do here is iterate through each element of the array of

visible tiles we returned from the getVisibleTiles() function and for each

array element add a tile image to the inner div. Here’s the new code for

our checkTiles() function:

File 37 Line 1 function checkTiles() {

- // check which tiles should be visible in the inner div

- var visibleTiles = getVisibleTiles();

-

5 // add each tile to the inner div, checking first to see

- // if it has already been added

- var innerDiv = document.getElementById("innerDiv");

- var visibleTilesMap = {};

- for (i = 0; i < visibleTiles.length; i++) {

10 var tileArray = visibleTiles[i];

- var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";

- visibleTilesMap[tileName] = true;

- var img = document.getElementById(tileName);

- if (!img) {

15 img = document.createElement("img");

- img.src = "resources/tiles/" + tileName + ".jpg";

- img.style.position = "absolute";

- img.style.left = (tileArray[0] * tileSize) + "px";

- img.style.top = (tileArray[1] * tileSize) + "px";

20 img.setAttribute("id", tileName);

- innerDiv.appendChild(img);

- }

- }

- }

We start out on line 8 by creating an empty map (map in the JavaScript

sense; a hash that contains key-to-value mappings). We’re going to add

an entry to this map for each visible image; we’ll discuss why we’re

doing this a little later.

On line 9, we start looping through each element in the array we sent

back from getVisibleTiles(). For each element, we build the name of the

image file that will be loaded in. (If you recall, the file-naming conven-

tion we chose in Step 2 was x0y0z0, where the numbers are replaced with

the index of the tile in the tile grid.) We also use this name as the key

in the visibleTilesMap variable, and on lines 13 and 20 you can see that

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help programmers stay on top of their

game.

Visit Us Online
Pragmatic Ajax
pragmaticprogrammer.com/titles/ajax

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community
pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/ajax.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/ajax
http://www.pragmaticprogrammer.com/catalog

