
Extracted from:

Pragmatic Ajax
A Web 2.0 Primer

This PDF file contains pages extracted from Pragmatic Ajax, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise
identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 5

Ajax Frameworks
Until now, we’ve looked at Ajax either at an abstract architectural level

or from down in the tunnels underneath the structure. The DOM API

and JavaScript’s sometimes tortured interactions with it form the basis

of all other Ajaxian techniques. Though it is vital to understand these

things for when you run into trouble, it is also likely that you’ve been

left scratching your head from time to time. Maybe you wondered who

decided to use magic numbers for all the readyState() values. Or why

the industry-standard way to create an XHR instance is in a try/catch

block that will encounter an exception ~70% of the time. In fact, if

you are anything like us, it probably occurred to you that you could

write a fairly simple wrapper around this stuff to make it more usable

in production code. These wrappers are fairly common; the Internet is

littered with their corpses.

A few library wrappers have survived and flourished to become full-

fledged toolkits. They provide us with much better leverage for using

these Ajaxian techniques to make real applications. In this chapter, we

will look at several of these frameworks at our disposal and will rewrite

Hector’s CRM application using the most mature and popular versions.

5.1 Frameworks, Toolkits, and Libraries

As Ajax has taken off, we’ve been inundated with projects claiming to

have Ajax support. Since the term itself has such a broad meaning in

the popular consciousness, it’s often hard to know exactly what this

means. Does the site perform asynchronous callbacks to the server?

Does it re-render fresh data in-page? Or does it just manipulate the

properties of existing DOM nodes? Figure 5.1, on the following page,

clarifies the distinct layers of Ajax proper.

FRAMEWORKS, TOOLKITS, AND LIBRARIES 78

Figure 5.1: Layers of Ajax Frameworks

Remoting Toolkit

The lowest level of Ajax helpers is a remoting toolkit. If you were to

create your own toolkit, this would probably be where you’d start out:

wrapping XMLHttpRequest with your own API to make life easier. A really

good remoting toolkit should be able to do much more than simply hide

our ugly try/catch XHR instantiation code. What should happen if your

Ajaxian page is loaded into a browser that does not support XMLHttp-

Request? It ought to find a way, if possible, to provide all (or at least

some) of the page’s functionality by other means. For example, some

remoting toolkits will use a hidden iframe to provide fake XHR support

to the page.

Figure 5.1 lists a handful of such frameworks, and shows what each

attempts to provide to developers. The Dojo Toolkit, JSON-RPC, and

Prototype are all pure JavaScript frameworks that are agnostic about

the world of the server side (although Prototype was built with Ruby on

Rails in mind).

Others, such as DWR (Direct Web Remoting), couple a JavaScript client

library with a server-side listener piece written for the Java platform.

JSON-RPC itself has various bindings for many back-end languages.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

FRAMEWORKS, TOOLKITS, AND LIBRARIES 79

iframes

Prior to the broad adoption of the XMLHttpRequest object, many
web applications were using a hidden iframe to accomplish
in-page round-trips back to the server. An iframe is just like a
normal HTML frame (a container that can be targeted at a URL
and render the results) except that it is embedded in another
page. These applications simply created an iframe of 0px by
0px and then caused it to refresh against a given URL in order
to pull more data back from the server.

While the technique is valid and worked for many, there were
two inherent problems. The first is, if you wanted multiple asyn-
chronous requests, you had to have multiple iframes. This
became a game of guessing how many you would need and
embedding that many in the page, which is not a tremendous
burden, just somewhat ungainly.

More important is the question of coding intentionally: the use
of iframe is a quintessential kludge. By that, we mean it’s the
repurposing of a technology to do something it wasn’t quite
meant to do. Though it works, it always feels a little like cheat-
ing. XMLHttpRequest, however poorly named, is an object specif-
ically designed for initiating, monitoring, and harvesting the
results of in-page postbacks. Programming against it feels nat-
ural, and lends itself to more readable (and therefore maintain-
able) code.

A third issue, which affects IE, is that the iframe issues audio
feedback to the user whenever it makes a request. This comes
in the form of a “click” sound, which can be jarring for the user
since they usually have no other indication of ongoing asyn-
chronous behavior.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

FRAMEWORKS, TOOLKITS, AND LIBRARIES 80

Toolkit Resources

• Dojo: http://dojotoolkit.com

• Prototype: http://prototype.conio.net/

• Script.aculo.us: http://script.aculo.us

• DWR: https://dwr.dev.java.net/

• Backbase: http://www.backbase.com

• SmartClient: http://www.isomorphic.com

• Ajax.NET: http://ajax.schwarz-interactive.de/

• SAJAX: http://www.modernmethod.com/sajax/

• JSON-RPC: http://json-rpc.org/

DWR, JSON-RPC, Ajax.NET, and SAJAX are all examples of ORB-based

Ajax frameworks. They allow you to map JavaScript methods to back-

end services, treating the client-side JavaScript as though it could

directly access your server-side objects.

UI Toolkit

Above, or potentially alongside, remoting toolkits we find JavaScript

UI libraries. These give us the ability to use rich UI components and

effects out of the box, but they differ in many ways.

Richer UI Components

Toolkits such as Dojo give us rich widgets like trees, tabbed panes and

menus. These are self-contained, instantiable UI components that can

be used to compose a rich, though still very “webish,” application. The

result is still unmistakably an HTML UI.

Web Application Toolkit

Toolkits such as SmartClient aim to give you widgets that build a UI

that looks and feels the same as a native application on Windows or Mac

OS X.These are useful if you are building an application that happens

to be on the Web versus a website that uses a couple of UI effects and

components. SmartClient, for example, features widgets that make the

page look and feel exactly like a Windows NT application.

CLICK HERE to purchase this book now.

http://dojotoolkit.com
http://prototype.conio.net/
http://script.aculo.us
https://dwr.dev.java.net/
http://www.backbase.com
http://www.isomorphic.com
http://ajax.schwarz-interactive.de/
http://www.modernmethod.com/sajax/
http://json-rpc.org/
http://www.pragmaticprogrammer.com/titles/ajax

FRAMEWORKS, TOOLKITS, AND LIBRARIES 81

Markup Based

Backbase allows you to add rich components through a markup pro-

gramming API. Your traditional HTML becomes something like this:

File 4 <xmp b:backbase="true" style="display:none;"

xmlns:nav="http://www.backbase.com/site/nav">

<s:event b:on="construct" b:action="show"/>

<!-- everything that is never shown - in here -->

<div style="display:none;">

<s:include b:url="/chrome/bb3/skin.xml"/>

<s:include b:url="/data/navigation.xml"/>

<s:include b:url="/data/forms.xml"/>

<!-- listeners for links to non-BDOC documents... -->

<div id="forum">

<s:event b:on="nav:show-page"

b:action="select"

b:target="id('forumBuffer')" />

</div>

<div id="/shop/">

<s:event b:on="nav:show-page"

b:action="select"

b:target="id('shop_main_panel')" />

</div>

<!-- Contains references to protected buffers -->

<!-- Trigger 'command' event to issue bufferdirty on them all -->

<div id="clear_protected_trigger">

<s:event b:on="command">

<s:task b:action="trigger"

b:event="command"

b:target="*" b:test="*" />

</s:event>

</div>

</div>

<!-- Include shop -->

<s:include b:url="/shop/shopIndex.html?cmd=index" />

<!-- ... -->

</xmp>

Such a system could potentially enable a new generation of visual

development tools. Part of the problem with such tools is the con-

flict between markup and code. Traditional JavaScript-based pages

have caused problems for such tools because it is difficult to provide

visual representations of code resources. An all-markup framework, on

the other hand, would provide the right abstractions for these kinds of

development environments. See, for example, the markup-based com-

ponents in ASP.NET, Tapestry, and JavaServer Faces.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

REMOTING WITH THE DOJO TOOLKIT 82

Simple JavaScript-Driven Effects

In Chapter 6, Ajax UI, Part I , on page 93, and Chapter 7, Ajax UI, Part II ,

on page 122, we’ll look at several frameworks that use pure JavaScript

and HTML to create extremely complex UI effects. These kinds of frame-

works provide high-level abstractions on top of some meaty JavaScript,

making the effects simple to implement in your application. The results

are often completely cross-browser compatible and fail gracefully to

static HTML in legacy browsers.

Ajaxian Web Frameworks

At the top of the tower are the web frameworks that are aware of Ajax.

This is a growing group and covers all of the platforms. All the major

players are represented: Java, .NET, Ruby, PHP, Python, Perl, etc.

Once again, the various frameworks offer different models for how you

can work with them in an Ajaxian world.

Code Generation

The Ruby on Rails community jumped on Ajax like nobody else. They

offer high-level Ruby helper functions that generate Prototype-based

JavaScript code. WebWork2 is doing the same thing on the Java plat-

form, utilizing the Dojo Toolkit as the base JavaScript framework. Many

other frameworks are following suit, from Spring to CherryPy to PHP.

Component-Based

ASP.NET had Ajaxian components before there was Ajax. Other frame-

works such as JavaServer Faces and Tapestry on the Java platform join

ASP.NET by letting you use components that may happen to use Ajax-

ian techniques. In this world, you drag your DataTableComponent onto

your designer view and start tweaking the property sheet for that com-

ponent. Here you may see a checkbox for autoupdate. Simply checking

that box will put this component in Ajax mode, and the rest is history.

5.2 Remoting with the Dojo Toolkit

Now that we’ve examined the landscape of available helper toolkits, we’ll

port Hector’s CRM application to several of them to see how they work.

Hector’s CRM system is working OK with our low-level XMLHttpRequest

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

REMOTING WITH THE DOJO TOOLKIT 83

example from the previous chapter, but we want to move up the stack

and utilize a remoting toolkit to abstract away browser compatibility

issues and give us more options for controlling the remoting calls.

We will first port our application to use the Dojo Toolkit,1 explain-

ing choices that you have along the way and finally discussing more

advanced features.

What Is the Dojo Toolkit?

Dojo is a browser toolkit. It is an open-source project that (to quote its

marketing text) aims to “allow you to easily build dynamic capabilities

into web pages and any other environment that supports JavaScript.

Dojo provides components that let you make your sites more useable,

responsive, and functional. With Dojo you can build degradable user

interfaces more easily, prototype interactive widgets quickly, animate

transitions, and build Ajax-based requests simply.”

It is a full-featured toolkit that has many packages, including the fol-

lowing:

• dojo.io: The core package that we will look at in this chapter, which

makes Ajax requests easy

• dojo.event: Browser-compatible event system

• dojo.lang: Support for mixins and object extension

• dojo.graphics: Support for nifty HTML effects such as fadeIn/Out, slideTo/By,

explode/implode, etc)

• dojo.dnd: Drag-and-drop support

• dojo.animation: Animation effects

• dojo.hostenv: Support for JavaScript packages (think imports and

includes instead of having to create script src="...")

Porting CRM to dojo.io.bind()

This chapter is all about the remoting layer, and in Dojo that means

the dojo.io package. We are going to go from where we left off with the

CRM application and replace the raw XMLHttpRequest object with a call to

dojo.io.bind().

1http://dojotoolkit.org

CLICK HERE to purchase this book now.

http://dojotoolkit.org
http://www.pragmaticprogrammer.com/titles/ajax

REMOTING WITH THE DOJO TOOLKIT 84

autocomplete="off"

As part of cleanup, we added the HTML attribute autocom-

plete="off" on the city and state input values. This stops your
browser from trying to do its own completion, which gets in the
way when the value is being set by a return from Ajax.

Cleaning Up the JavaScript

Before we even get into Dojo, we should clean up the JavaScript a little

and encapsulate the acts of assigning the city and state in the form and

announcing errors. Until now these acts were hidden in the callback

function used by XMLHttpRequest.

First, we create a function that assigns the city and state:

File 11 function assignCityAndState(data) {

var cityState = data.split(',');

document.getElementById("city").value = cityState[0];

document.getElementById("state").value = cityState[1];

document.getElementById("zipError").innerHTML = "";

}

Then we have a simple error assignment procedure:

File 11 function assignError(error) {

document.getElementById("zipError").innerHTML = "Error: " + error;

}

With this simple abstraction, we will be able to use any remoting solu-

tion and reuse these functions.

Migrating to dojo.io.bind()

Now we get to the dojo.io package and in particular, a dojo.io.bind() func-

tion that encapsulates remoting. Everything you need to do with remot-

ing can be done with this simple function. dojo.io.bind() takes a hash as

input, using the values to initialize the underlying XHR object and reg-

ister callbacks to other JavaScript functions.

We have to include Dojo in our HTML head element:

<script language="JavaScript" type="text/javascript"

src="../scripts/dojo/dojo.js">

</script>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://www.pragmaticprogrammer.com/titles/ajax

REMOTING WITH THE DOJO TOOLKIT 85

Let’s look at the code that now does the Ajax request for the Zip data:

File 11 function getZipData(zipCode) {

dojo.io.bind({

url: url + "?zip=" + zipCode,

load: function(type, data, evt){ assignCityAndState(data); },

error: function(type, error){ assignError(error); },

mimetype: "text/plain"

});

}

The must-have element in the dojo.io.bind() parameter is the url key. In

our example it will become /ajaxian-book-crm/zipService?zip=53711 if you are

looking up a Wisconsin city.

The load key takes a function object as a callback. After the Ajax request

has loaded a response, this function will be called (think of this as being

the callback when the status from an XMLHttpRequest is the magic 4). In

your callback you get access to the following:

• type, which tells you whether the response returned normally (load)

or from an error condition (error).

• data, the response (harvested from XHR.responseText). This is the

payload of the request.

• evt, a DOM event.

The error key handles errors, whereas load handles successful requests.

The function callback gets access to the error message itself in its sec-

ond function parameter.

The mimetype key is important. We have discussed how there are various

styles of remoting and how you can choose to return HTML, JavaScript,

or your own text. Here, we decided to use text/plain, get back the city/state

information as the string Madison,WI, and split up for our usage.

Changing dojo.io.bind() to Use a Return Type of JavaScript

Now we have our Ajax request encapsulated in one simple dojo.io.bind()

function call. This is a lot more elegant than using the raw XMLHttpRequest

API, and we will soon see how we have access to features above and

beyond the simple requesting and retrieving of data.

What if we wanted to talk to a service that responded directly with

JavaScript for us to evaluate, instead of a proprietary string that we

needed to parse? For example, instead of returning Madison,WI, the ser-

vice could return this:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://www.pragmaticprogrammer.com/titles/ajax

REMOTING WITH THE DOJO TOOLKIT 86

Generic Handle

Rather than separating the load and error handlers, in theory
you can use one handler named handle. This is when you would
use the type parameter and would probably check against it
to see how you were called. We could have written the same
example as follows:

handle: function(type, data, evt){

if (type == "load") {

assignCityAndState(data);

} else if (type == "error") {

assignError(error);

} else {

// could potentially handle other types!

}

},

document.getElementById('city').value = 'Boulder';

document.getElementById('state').value = 'CO';

Making this change is quite trivial with Dojo, and it will simplify our

code even more. We can get rid of the assignCityState() call itself, and

there is no need for a load() function, because Dojo will automatically

load a JavaScript result from the server if we tell it via the MIME type

text/javascript:

File 10 function getZipData(zipCode) {

dojo.io.bind({

url: url + "?zip=" + zipCode + "&type=eval",

error: function(type, error){ assignError(error); },

mimetype: "text/javascript"

});

}

Notice that we added &type=eval to the URL to make sure that the server

sent us back JavaScript this time.

Advanced Features of dojo.io.bind()

We hope at this point you have seen that it makes little sense to use the

low-level API when you have a nice, clean, simple interface that Dojo

gives you. It turns out that dojo.io.bind() can do a lot more for you. For

one, it is able to do browser detection and makes sure that it finds the

right XMLHttpRequest object for your browser. If it can’t find one, it can

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

REMOTING WITH THE DOJO TOOLKIT 87

Transport Enforcement

Sometimes, we don’t want graceful, transparent failover. If, for
some reason, we must mandate that only certain kinds of post-
back transport mechanisms be used, we can pass in our rule on
the dojo.io.bind() call. If we want to enforce one transport only,
we can do so by setting the following

transport: 'XMLHTTPTransport'

in the hash that we pass in.

drop back to iframes to do the deed. All of this happens transparently

to the developer.

Submitting Forms

Dojo can submit a form asynchronously for you as well as access a

given URL. All you need to do to submit your form is tell Dojo about the

form element in your HTML via the following:

dojo.io.bind({

url: "http://your.formsub.url",

load: function(type, obj) { /* use the response */ },

formNode: document.getElementById('yourForm')

})

What if your form has a file upload as part of it? XMLHttpRequest can’t

do the job here, because it can’t get the file from disk in a reliable way.

Dojo has a solution, though, thanks to the pluggable I/O layer.

Browsers know how to send files, and we piggyback on that by selecting

the IframeIO transport.

So, the simple solution is to place the following piece of code before you

have forms with file uploads:

dojo.require("dojo.io.IframeIO");

Support for Browser Back/Forward Buttons

This feature is a gem. One of the issues with using XMLHttpRequest versus

an iframe is that iframe events are placed in the browser history, while

XHR events are not. This can cause an issue if a user clicks something

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

REMOTING WITH THE DOJO TOOLKIT 88

Uploading a File without a File!

You can actually upload content as though it is a file using the
XMLHttpRequest transport.

In your dojo.io.bind(..) call, pass in a file object to the argument
object itself:

file: {

name: "upload.txt",

contentType: "plain/text",

content: "look ma! no form node!"

}

that causes an Ajax request that changes the page, and then they hit

the back button assuming that it will take them to the state they were

in before that request. Instead, they are taken to the page before the

Ajax code (which could be away from your website!).

Dojo allows you to tie into the browser buttons, passing in the work

that you want to do when a user clicks back or forward. In our CRM

example, you could save the current city and state information and

clean it out in the form when the user clicks back. Then, if the user

clicks forward you could reset it into the form without having to go back

to the server.

backButton: function() {

saveCityState();

cleanCityState();

},

forwardButton: function() {

setupCityState();

},

How does Dojo do this? Is there a nice API that Firefox and IE give you

to hook in? No. The actual implementation differs depending on the

browser, but at a high level Dojo creates a hidden iframe, makes it go

forward two requests, and then one back. Now, it is set up ready to

do your bidding. If you click back, the onload event will call into your

backButton callback. Ditto for the forward button.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/ajax

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help programmers stay on top of their

game.

Visit Us Online
Pragmatic Ajax
pragmaticprogrammer.com/titles/ajax

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community
pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/ajax.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/ajax
http://www.pragmaticprogrammer.com/catalog

