
Copyright 2009 The Pragmatic Programmers, LLC

Appendix A

Installing Clang Static Analyzer
on Mac OS X Leopard

If you’re using the iPhone SDK on Mac OS X Leopard, you can install

the Clang Static Analyzer as a command-line utility and use it to check

for coding errors in your Xcode projects. Of course, if you are developing

on Mac OS X 10.6 (“Snow Leopard”), the Clang Static Analyzer has been

integrated into Xcode and you can analyze your code from within the

IDE.

A.1 Downloading and Installing

Begin by visiting http://clang.llvm.org/StaticAnalysis.html, the Static Ana-

lyzer’s page. Find the download link on this page—as of this writing,

it’s checker-0.214.tar.bz2—and download the compressed archive to your

Mac. The tarred and bzip2ed file can be easily uncompressed by sim-

ply double-clicking it in the Finder, which will create a folder named

checker-XXX, where XXX is the build number. The contents of this file are

the executables and the files that they need, so you could execute the

application right away by typing in a full path to the executable. More

likely, you probably want to move the folder some place permanent,

and to get it in your command-line PATH, so you can execute it without

typing in a full path.

What I usually do is to copy the analyzer to the /usr/local directory, and

then make a symbolic link in /usr/local/bin to the scan-build executable.

With this approach, I can keep a couple builds of Clang hanging around

in /usr/local, so if a new build doesn’t work, I just re-point the sym-

Copyright 2009 The Pragmatic Programmers, LLC

2 APPENDIX A. INSTALLING CLANG STATIC ANALYZER ON MAC OS X LEOPARD

link. To do this, go to the Terminal and change your current directory

to Downloads with a simple cd ~/Downloads. Assuming you’ve already

decompressed the checker-XXX folder, then you copy it to /usr/local by

means of the sudo command, which performs your copy command as

an Administrator (which you need in order to copy into that system

directory):

Yuna:~ cadamson$ sudo cp -R ~/Downloads/checker-0.214 /usr/local

Next, you create the symbolic link in the /usr/local/bin directory that

points to the scan-build executable in the directory you just copied.

This is a convenience so you can kick off the analyzer by just typing

scan-build rather than having to type the entire path /usr/local/checker-

0.214/scan-build. Of course, you might have to create /usr/local/bin if it

doesn’t already exist (check with ls /usr/local). Here are the necessary

commands:1

Yuna:Downloads cadamson$ sudo mkdir /usr/local/bin # only if needed

Yuna:Downloads cadamson$ sudo ln -s /usr/local/checker-0.214/scan-build\

/usr/local/bin/scan-build

By the way, if you install a newer version of scan-build and repeat

these steps, you need to manually remove the old symlink with sudo

rm /usr/local/bin/scan-build before creating the new symlink.

There’s a second executable, scan-view, that offers an optimized view of

the build results, by running as a tiny web server on port 8181. Let’s

get that in your path too:

Yuna:Downloads cadamson$ sudo ln -s /usr/local/checker-0.214/scan-view\

/usr/local/bin/scan-view

A.2 Preparing your project for the Analyzer

So, now you’ve installed the static analyzer and should have it in your

PATH (you can test this with which scan-build). Test it out by printing its

usage message:

Yuna:Downloads cadamson$ scan-build --help

This will produce a long message that shows the build date and num-

ber, along with a summary of the command-line options.

1. Note that we have used the line-break character (\) to present the ln command on two

lines to fit the book’s formatting. You can omit the backslash and the line-break and just

type this command on a single line.

Copyright 2009 The Pragmatic Programmers, LLC

RUNNING THE ANALYZER 3

Assuming you’ve been working through the book’s “Performance Tun-

ing” chapter, let’s run the Clang Static Analyzer against that chapter’s

PathologicalPrimeCounter code and see what turns up. Use the cd com-

mand to change your current directory to the folder containing your

Xcode project.2

You need to take care of one more piece of business before running

the analyzer. Be sure that your project builds without errors—on the

command-line, CSA’s scan-build actually builds your code, either via

make or xcodebuild, so you have to be sure that your project builds

correctly with its default options. If it doesn’t, you may see a bewildering

error message saying that scan-build can’t find a needed version of gcc.

In practice, we’ve seen this when a project defaults to building for the

device instead of the simulator, and the current environment isn’t provi-

sioned for code signing. This may be the case if you download someone

else’s code, the project is set to build for the device, and you haven’t

joined the paid iPhone developer program and gotten an app signing

certificate yet. You can get around this by changing the project’s prop-

erties to build for the simulator by default, rather than the device.

In your Xcode project, select the project icon from the very top of the

“Groups & Files” tree, then choose “Get Info” from the toolbar or the

“File” menu. As shown in the (as yet) unwritten fig.clang-set-base-sdk,

set the “Base SDK” to “Simulator”, rather than “Device”. If you want

you can double-check your work on the command-line by using xcode-

build to build the project with its default options; don’t try running the

Analyzer until this gives you a BUILD SUCCEEDED result.

A.3 Running the Analyzer

Now we’re ready to actually run scan-build on the project. To do this,

you use the command scan-build, followed by whatever command builds

your project: either xcodebuild or make. In our case, it’s the former:

Yuna:PathologicalPrimeCounter cadamson$ scan-build xcodebuild

Once you do this, you’ll see a bunch of logging messages from the build,

concluding with the output from scan-build:

2. Tip: Rather than typing this path into Terminal, you can type cd, a space, and then

drag the folder icon from a Finder window’s title bar into the Terminal window to have

the path to that folder inserted onto the command line.

Copyright 2009 The Pragmatic Programmers, LLC

4 APPENDIX A. INSTALLING CLANG STATIC ANALYZER ON MAC OS X LEOPARD

Figure A.1: SCAN-VIEW OVERVIEW OF STATIC ANALYSIS REPORT

** BUILD SUCCEEDED **
scan-build: 1 bugs found.

scan-build: Run 'scan-view /var/folders/ba/baOL2wJxE8aPV3tF1AeZsU+++TI/

-Tmp-/scan-build-2009-08-10-1' to examine bug reports.

Ah, a bug. Let’s take a look. If you’re using Terminal, copy and paste

the scan-view command to your command-line and execute it to bring

up the bug report in your preferred browser, as seen in Figure A.1.3

This launches your default browser, and shows an overview of the static

analyzer’s report, including how the analyzer was run, and a count of

the various types of bugs.

Down in the “Reports” section, you’ll see a list of each discovered bug,

described by group, type, and the source file and line number where

you’ll find the bug. After this, you’ll find three links:

• View Report to investigate code paths that lead to the bug.

• Report Bug to file a bug with the Clang project, if you believe the

bug report to be erroneous.

3. Instead of manually typing scan-view, you can go directly to the results at the end of

the scan by using scan-build’s -V argument.

Copyright 2009 The Pragmatic Programmers, LLC

FINAL THOUGHTS 5

Figure A.2: VIEWING THE CLANG STATIC ANALYZER REPORT OF AN

OBJECTIVE-C MEMORY LEAK

• Open File to open the source file in Xcode.

Click “View Report” to see an HTML-formatted presentation of the dis-

covered bug. Figure A.2

The report shows each step of a path through the various branches

of your code that leads to the bug. In this case, there are just two

annotations: point 1 shows where we have alloc’ed an NSString, and point

2 indicates where it is no longer referenced (indeed, it has gone out of

scope) and has not been released. With a retain count of 1, the object

leaks. The fix here is to either manually release the string when it is

no longer needed, or to auto-release it (by appending the autorelease

method to the line that creates the string, or by using the autoreleasing

class method stringWithFormat:).

A.4 Final Thoughts

Now that you have the Clang Static Analyzer installed, you can make it

a regular part of your development process. Whether you have a run-

away memory leak, or you’re just being careful to pick off the little leaks

that could add up over time, scan-build will save you a lot of time and

Copyright 2009 The Pragmatic Programmers, LLC

6 APPENDIX A. INSTALLING CLANG STATIC ANALYZER ON MAC OS X LEOPARD

precious device memory. We used it to check most of the book’s exam-

ple code,4 and it helped root out a number of mistakes that we’re glad

not to have shipped with the final version.

Despite the fact that it is not even at a full 1.0 release, Apple has

incorporated the Clang Static Analyzer into Snow Leopard’s Xcode’s

tools, and that’s a strong statement about the promise and value of

this project. With the ability to find important and subtle bugs with lit-

tle effort on your part—arguably a lot less than tracking down a leak

with Instruments—it will likely be a major part of your iPhone develop-

ment toolkit going forward, whether used as part of Xcode or run from

the command-line as a stand-alone utility, as we’ve presented in this

appendix.

4. We had problems with a few device-only projects and went over those manually.

