
Extracted from:

iPhone SDK Development
Building iPhone Applications

This PDF file contains pages extracted from iPhone SDK Development, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Bill Dudney and Chris Adamson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-25-5

ISBN-13: 978-1-934356-25-8

Printed on acid-free paper.

P2.0 printing, December 2009

Version: 2010-2-3

http://www.pragprog.com


COMMUNICATING VIA THE GKSESSION 296

13.8 Communicating via the GKSession

Having mapped out a strategy for sending game data across Bluetooth,

we can now implement our protocol with Game Kit’s communication

methods. We’ll want to be able to handle state changes from peers (i.e.,

when the opponent connects or disconnects), send data to the oppo-

nent, and receive data from the opponent.

Sending Data

We need to send data to a peer every time the tap view is tapped, so

let’s go ahead and implement our handleTapViewTapped event handler:

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(IBAction) handleTapViewTapped {

playerTapCount++;

[self updateTapCountLabels];

// did we just win?

BOOL playerWins = playerTapCount >= WINNING_TAP_COUNT;

// send tap count to peer

NSMutableData *message = [[NSMutableData alloc] init];

NSKeyedArchiver *archiver =

[[NSKeyedArchiver alloc] initForWritingWithMutableData:message];

[archiver encodeInt:playerTapCount forKey: TAP_COUNT_KEY];

if (playerWins)

[archiver encodeBool:YES forKey:END_GAME_KEY];

[archiver finishEncoding];

GKSendDataMode sendMode =

playerWins ? GKSendDataReliable : GKSendDataUnreliable;

[gkSession sendDataToAllPeers: message withDataMode:sendMode error:NULL];

[archiver release];

[message release];

// also end game locally

if (playerWins)

[self endGame];

}

This obviously calls a few internal game methods that we haven’t writ-

ten yet, starting with the call to update the score locally with update-

TapCountLabels. The critical part of the method is after this, however:

an NSKeyedArchiver is created to pack an NSMutableData with key-value

pairs for our message. The updated tap count is added to the message,

and if it equals the tap count needed to win the game, the END_GAME_

KEY is added as well. We then call GKSession’s sendDataToAllPeers:withData-

Mode:error: method in reliable mode if it includes the END_GAME_KEY,

unreliably otherwise. Finally, there’s a little more local logic to end the

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://www.pragprog.com/titles/amiphd


COMMUNICATING VIA THE GKSESSION 297

game locally if necessary, with yet-to-be-written endHostedGame and

endJoinedGame methods.

That takes care of the sending, but there’s clearly quite a bit we haven’t

accounted for, including the receipt of messages and the game startup.

These tasks aren’t initiated by our application but are instead per-

formed by the delegate methods, which handle asynchronous events

from the session.

Handling State Changes

Let’s start with session:didReceiveConnectionRequestFromPeer:, which is

called when one party receives a request from another to connect. When

the GKSession is connected via the peer picker, this callback is received

only by the player who was asked to join the game, not by the one who

chose the opponent in the picker. This gives us a chance to make the

requesting player the host, a designation we use so that only one party

actually starts the game.

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

- (void)session:(GKSession *)session

didReceiveConnectionRequestFromPeer:(NSString *)peerID {

actingAsHost = NO;

}

Assuming that this player accepts the request, each side’s delegates

will get a callback to session:peer:didChangeState:, with the state GKPeer-

StateConnected. A number of other states can be reported this way, but

for now, let’s just implement some logic to set up the game when a peer

connects:

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

- (void)session:(GKSession *)session peer:(NSString *)peerID

didChangeState:(GKPeerConnectionState)state {

switch (state)

{

case GKPeerStateConnected:

[session setDataReceiveHandler: self withContext: nil];

opponentID = peerID;

actingAsHost ? [self hostGame] : [self joinGame];

break;

}

}

When a connection is received, the first thing this method does is to

call setDataReceiveHandler:withContext: on the GKSession. This is critical,

because it gives the session an object that is capable of receiving data

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://www.pragprog.com/titles/amiphd


COMMUNICATING VIA THE GKSESSION 298

over the network. The handler object is not specified with a formal pro-

tocol, but it has to implement a callback method with the following

signature:

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer

inSession: (GKSession *)session context:(void *)context;

setDataReceiveHandler:context: also takes a context that is passed back to

the receiveData:fromPeer:inSession:context method. As a void*, this context

reference can be any kind of pointer, including all Objective-C objects.

We don’t need a context object for this game, so we set it to nil.

Next, our state-change handler remembers the peer ID of the opponent

as the instance variable opponentID and either starts or joins the game

based on whether this player is the host. Both of these methods need

to update the local state and GUIs, but only the host needs to send a

“start game” message over the connection. Here are the hostGame and

joinGame methods, along with the initGame and updateTapCountLabels

convenience methods they both call:

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(void) updateTapCountLabels {

playerTapCountLabel.text =

[NSString stringWithFormat:@"%d", playerTapCount];

opponentTapCountLabel.text =

[NSString stringWithFormat:@"%d", opponentTapCount];

}

-(void) initGame {

playerTapCount = 0;

opponentTapCount = 0;

}

-(void) hostGame {

[self initGame];

NSMutableData *message = [[NSMutableData alloc] init];

NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]

initForWritingWithMutableData:message];

[archiver encodeBool:YES forKey:START_GAME_KEY];

[archiver finishEncoding];

NSError *sendErr = nil;

[gkSession sendDataToAllPeers: message

withDataMode:GKSendDataReliable error:&sendErr];

if (sendErr)

NSLog (@"send greeting failed: %@", sendErr);

// change state of startQuitButton

startQuitButton.title = @"Quit";

[message release];

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://www.pragprog.com/titles/amiphd


COMMUNICATING VIA THE GKSESSION 299

[archiver release];

[self updateTapCountLabels];

}

-(void) joinGame {

[self initGame];

startQuitButton.title = @"Quit";

[self updateTapCountLabels];

}

In startGame, you can again see how we use an NSKeyedArchiver to build

a message in an NSMutableData, which as a subclass of NSData is appro-

priate for use with the GKSession’s sendDataToAllPeers:withDataMode:error:

method.

Receiving Data

Now that we’ve handled state changes from opponents,3 the last re-

maining task is to deal with the data we receive from a peer. We created

the outgoing data with an NSKeyedArchiver, so to unpack it on the receiv-

ing end, we’ll use an NSKeyedUnarchiver.

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

- (void) receiveData: (NSData*) data fromPeer: (NSString*) peerID

inSession: (GKSession*) session context: (void*) context {

NSKeyedUnarchiver *unarchiver =

[[NSKeyedUnarchiver alloc] initForReadingWithData:data];

if ([unarchiver containsValueForKey:TAP_COUNT_KEY]) {

opponentTapCount = [unarchiver decodeIntForKey:TAP_COUNT_KEY];

[self updateTapCountLabels];

}

if ([unarchiver containsValueForKey:END_GAME_KEY]) {

[self endGame];

}

if ([unarchiver containsValueForKey:START_GAME_KEY]) {

[self joinGame];

}

[unarchiver release];

}

As you can see, the unarchiver gets the data received by the GKSes-

sion and looks for some of the known keys. If it sees TAP_COUNT_KEY, it

unpacks the value and updates the score display, whereas if END_GAME

_KEY appears, it calls a method to end the game, cleans up the local

3. Actually, a fully robust app would want to handle some of the other state changes,

such as gracefully dealing with a peer that has disconnected.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://www.pragprog.com/titles/amiphd


VOICE CHAT 300

state, disconnects all peers from the GKSession, and calls a convenience

method to show a victory or defeat alert, both of which are shown in

Figure 13.6, on the following page.

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(void) showEndGameAlert {

BOOL playerWins = playerTapCount > opponentTapCount;

UIAlertView *endGameAlert = [[UIAlertView alloc]

initWithTitle: playerWins ? @"Victory!" : @"Defeat!"

message: playerWins ? @"Your thumbs have emerged supreme!":

@"Your thumbs have been laid low"

delegate:nil

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[endGameAlert show];

[endGameAlert release];

}

-(void) endGame {

opponentID = nil;

startQuitButton.title = @"Find";

[gkSession disconnectFromAllPeers];

[self showEndGameAlert];

}

That’s everything you need to build and deploy this peer-to-peer Blue-

tooth game. To review, we used a GKPeerPickerController to present the

user with a GUI to select an opponent. We provided the picker with

a GKSession to handle the local Bluetooth networking and added del-

egate methods so this session could pass along asynchronous events

like peers connecting. On the GKPeerStateConnected event, we set up

the game, using the session to send data to the peer and providing

the session with a “data receive handler” that could process incoming

messages from the peer.

13.9 Voice Chat

Along with Bluetooth local networking, the other feature provided by

Game Kit is peer-to-peer chat. As mentioned earlier, these two features

are completely independent: you can use the voice chat with the Blue-

tooth network we set up in the previous sections or over a wifi connec-

tion that you’ve set up. Let’s look in general terms at how voice chat

works.

Voice chat uses just two classes. The GKVoiceChatService represents a

single, shared access point to voice chat functionality. You get a refer-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://www.pragprog.com/titles/amiphd


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
iPhone SDK Development’s Home Page

http://pragprog.com/titles/amiphd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/amiphd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/amiphd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/amiphd
www.pragprog.com/catalog



