
Extracted from:

iPhone SDK Development
Building iPhone Applications

This PDF file contains pages extracted from iPhone SDK Development, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Bill Dudney and Chris Adamson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-25-5

ISBN-13: 978-1-934356-25-8

Printed on acid-free paper.

P2.0 printing, December 2009

Version: 2010-2-3

http://www.pragprog.com


MAP ANNOTATIONS 471

Location switch in IB or set the showsUserLocation property to YES, the

map view will turn on the location manager and get updated with the

current location. All we need to do is implement the proper map view

delegate method. We will look at that in just a minute.

25.3 Map Annotations

There are two parts to each annotation on the map. The model piece of

it is intended to be lightweight, so you can have many of them attached

to a given map and not have to worry about the memory footprint. The

other side is the view. Let’s look at the model side first.

Map Kit defines the MKAnnotation protocol but no public implementa-

tions. So, in order to add an annotation to the map, we need to cre-

ate our own implementation of this protocol. The protocol defines one

property and two optional methods. The property is the location for the

annotation; the methods are title and subtitle. The title is used as the

text for the callout when the user clicks the annotation. The subtitle is

displayed in smaller text under the title. Here is the header file for our

annotation:

Download MapKit/ContactMapper_01/Classes/ContactAnnotation.h

#import <Foundation/Foundation.h>

#import <CoreLocation/CoreLocation.h>

#import <MapKit/MapKit.h>

#import <AddressBook/AddressBook.h>

@interface ContactAnnotation : NSObject <MKAnnotation> {

CLLocationCoordinate2D _coordinate;

NSString *_title;

NSString *_subtitle;

ABRecordRef _person;

}

+ (id)annotationWithCoordinate:(CLLocationCoordinate2D)coordinate;

- (id)initWithCoordinate:(CLLocationCoordinate2D)coordinate;

@property (nonatomic, assign) CLLocationCoordinate2D coordinate;

@property (nonatomic, assign) ABRecordRef person;

@property (nonatomic, copy) NSString *title;

@property (nonatomic, copy) NSString *subtitle;

@end

Since our annotation represents one of our contacts, we add a prop-

erty named person for the contact. We also defined the title and subtitle

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactAnnotation.h
http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 472

properties instead of just defining the methods defined in the proto-

col. Finally, we have the initWithCoordinate: and annotationWithCoordinate:

methods that do as you’d expect, initialize a ContactAnnotation, and cre-

ate and return an autoreleased annotation, respectively. Here is the

implementation for the ContactAnnotation:

Download MapKit/ContactMapper_01/Classes/ContactAnnotation.m

@implementation ContactAnnotation

@synthesize coordinate = _coordinate;

@synthesize title = _title;

@synthesize subtitle = _subtitle;

@synthesize person = _person;

+ (id)annotationWithCoordinate:(CLLocationCoordinate2D)coordinate {

return [[[[self class] alloc] initWithCoordinate:coordinate] autorelease];

}

- (id)initWithCoordinate:(CLLocationCoordinate2D)coordinate {

self = [super init];

if(nil != self) {

self.coordinate = coordinate;

}

return self;

}

@end

Now that we have our annotation, we need to look at how we are going

to create and add the annotation to the map. Thinking back to the

way we want the application to work, when the user clicks the Choose

button, we want to bring up the people picker. After a contact’s address

is chosen, we want to add the annotation. To make that happen, we

have to do a couple of steps:

1. Add the AddressBook and AddressBookUI frameworks to the

project.

2. Add an action method to the view controller, and implement it to

present the person chooser.

3. Add a toolbar to the bottom of the view, and resize the map view

to fit.

4. Connect the Choose button to the action method.

5. Implement the people picker delegate protocol to get the address

when it’s clicked.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactAnnotation.m
http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 473

Let’s look at the action method. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (IBAction)choose {

ABPeoplePickerNavigationController *picker =

[[ABPeoplePickerNavigationController alloc] init];

picker.peoplePickerDelegate = self;

[self presentModalViewController:picker animated:YES];

[picker release];

}

Now that we have the implementation, we need to add the declaration

in the header file and then go back to IB to add the toolbar and make

the connection from the button to the File’s Owner.

For more detail on the people picker, see Chapter 23, Address Book, on

page 445. Now that we have become the delegate of the people picker,

we need to add that protocol to the header file and implement the meth-

ods. Of the three methods, we are going to look only at one, the peo-

plePickerNavigationController:shouldContinueAfterSelectingPerson:property:

identifier: method. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

Line 1 - (BOOL)peoplePickerNavigationController:
- (ABPeoplePickerNavigationController *)peoplePicker
- shouldContinueAfterSelectingPerson:(ABRecordRef)person
- property:(ABPropertyID)property
5 identifier:(ABMultiValueIdentifier)identifier{
- if(kABPersonAddressProperty == property) {
- NSString *fullName = (NSString *)ABRecordCopyCompositeName(person);
- CLLocationCoordinate2D coordinate = {0.0f, 0.0f};
- self.newAnnotation = [ContactAnnotation annotationWithCoordinate:coordinate];

10 self.newAnnotation.title = fullName;
- self.newAnnotation.person = person;
- [fullName release];
- ABMultiValueRef addresses =
- ABRecordCopyValue(person, kABPersonAddressProperty);

15 CFIndex selectedAddressIndex =
- ABMultiValueGetIndexForIdentifier(addresses, identifier);
- CFDictionaryRef address =
- ABMultiValueCopyValueAtIndex(addresses, selectedAddressIndex);
- self.newAnnotation.coordinate = [AddressGeocoder locationOfAddress:address];

20 [self dismissModalViewControllerAnimated:YES];
- }
- return NO;
- }

If the contact’s address was chosen, then we grab the contact’s full

name, create an annotation, set the fullName to be the title, and set the

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 474

annotation’s person to be the selected contact. We also grab the address

starting on line 13. We then geocode the address on line 19. We will look

at the geocoding stuff in a moment (in Section 25.3, TouchXML and the

AddressGeocoder, on page 476). After the user has chosen an address,

we dismiss the person picker view.

Now our work is almost complete. Although we have created the new

annotation, we have not added it to the map. We could do that in the

people picker delegate method. However, we will get a much nicer ani-

mation if we place the code in the viewDidAppear: name. Here is the

code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (void)viewDidAppear:(BOOL)animated {

[super viewDidAppear:animated];

if(nil != self.newAnnotation) {

[self.mapView addAnnotation:self.newAnnotation];

self.newAnnotation = nil;

}

if(self.mapView.annotations.count > 1) {

[self recenterMap];

}

}

First we check to see whether we have a new annotation to add, and

if so, we add it and then set the newAnnotation to nil. If we have more

than one annotation, we also recenter the map by calling the recen-

terMap method. Recentering the map is straightforward; we build a new

region centered between the annotations with a span that covers all the

annotations. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (void)recenterMap {

NSArray *coordinates = [self.mapView valueForKeyPath:@"annotations.coordinate"];

CLLocationCoordinate2D maxCoord = {-90.0f, -180.0f};

CLLocationCoordinate2D minCoord = {90.0f, 180.0f};

for(NSValue *value in coordinates) {

CLLocationCoordinate2D coord = {0.0f, 0.0f};

[value getValue:&coord];

if(coord.longitude > maxCoord.longitude) {

maxCoord.longitude = coord.longitude;

}

if(coord.latitude > maxCoord.latitude) {

maxCoord.latitude = coord.latitude;

}

if(coord.longitude < minCoord.longitude) {

minCoord.longitude = coord.longitude;

}

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 475

if(coord.latitude < minCoord.latitude) {

minCoord.latitude = coord.latitude;

}

}

MKCoordinateRegion region = {{0.0f, 0.0f}, {0.0f, 0.0f}};

region.center.longitude = (minCoord.longitude + maxCoord.longitude) / 2.0;

region.center.latitude = (minCoord.latitude + maxCoord.latitude) / 2.0;

region.span.longitudeDelta = maxCoord.longitude - minCoord.longitude;

region.span.latitudeDelta = maxCoord.latitude - minCoord.latitude;

[self.mapView setRegion:region animated:YES];

}

After identifying the minimum and maximum latitude and longitude,

we create a new region based on this min and max and then tell the

map view to set its region to this new region.

Now we have an application that does most of what we want. Build

and Go, and choose one of your contacts to see the pin drop and the

map resize to fit your current location and the location of the chosen

contact.

However, our pin is red, and we really wanted it to be purple. The

default color is red, and since we have not done anything special, that

is what we get. Although that works, we want a purple pin. To get a

purple pin, we need to implement the MKMapViewDelegate protocol.

There are several methods in the MKMapViewDelegate protocol; most of

them are callbacks to let you know when interesting stuff is happening

with the map view (that is, mapViewWillStartLoadingMap:). The one we are

interested in now, though, is the mapView:viewForAnnotation: method.

Like the table view, the map view keeps a set of annotation views that

can be dequeued and reused. Our implementation of this method needs

to take that into account and make sure to use the dequeued view when

possible. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (MKAnnotationView *)mapView:(MKMapView *)mapView

viewForAnnotation:(id <MKAnnotation>)annotation {

MKPinAnnotationView *view = nil;

if(annotation != mapView.userLocation) {

view = (MKPinAnnotationView *)

[mapView dequeueReusableAnnotationViewWithIdentifier:@"identifier"];

if(nil == view) {

view = [[[MKPinAnnotationView alloc]

initWithAnnotation:annotation reuseIdentifier:@"identifier"]

autorelease];

}

[view setPinColor:MKPinAnnotationColorPurple];

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 476

[view setCanShowCallout:YES];

[view setAnimatesDrop:YES];

} else {

CLLocation *location = [[CLLocation alloc]

initWithLatitude:annotation.coordinate.latitude

longitude:annotation.coordinate.longitude];

[self setCurrentLocation:location];

}

return view;

}

The first thing we do is check whether the current annotation is the

current user location. We could return our own annotation view for the

current user location, and it would work; however, if we return nil, then

the default annotation view is used. The default annotation view for

the current user’s location is the blue dot that has the nice bouncing

animation.

If this is not the user’s current location, we dequeue an annotation

view, and if there is not one to dequeue, we create one. Then we set up

the annotation view the way we want it and then return the view. In

our case, we are setting the pin color to purple, turning on callouts and

specifying that the annotation should drop in with an animation.

If it is the user’s current location, we call the setCurrentLocation:. This is

where we get the Map Kit’s integration with a location manager without

having to implement the delegation methods ourselves.

TouchXML and the AddressGeocoder

Now let’s talk about the AddressGeocoder. The geocoder uses a web ser-

vice to encode the addresses. We pass in an address and out pops XML

with the address and the latitude and longitude. As you saw back in

the Chapter 12, Connecting to the Internet, on page 246, we can use

the NSXMLParser to parse XML, and although that works, it can be quite

tedious to parse the whole XML file when you really want only a couple

of bits of information. To get at the data we want, we have a couple of

options. The iPhone includes the libXML2 open source library, which

works like a champ. But the API is entirely C-based, which makes it

a bit of a cognitive disconnect when you’d rather be doing Objective-C.

Enter the TouchXML open source library.

TouchXML provides an Objective-C wrapper over the libXML2 library.

The project is located on the Google Code website at http://code.google.

com/p/touchcode/wiki/TouchXML. Version 1.0.6 is included in the code

for this chapter, so you don’t have to download it. The driver behind

CLICK HERE to purchase this book now.

http://code.google.com/p/touchcode/wiki/TouchXML
http://code.google.com/p/touchcode/wiki/TouchXML
http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 477

TouchXML is to provide the simplified XML APIs that are available on

the Mac but not on the iPhone. So, if you want detailed documentation

about one of the classes, you can replace the leading C with NS and look

in the Mac documentation for details.

TouchXML provides us with XPath, which requires far less code to

extract the information we need than doing the same with the parser.

To get TouchXML working with your project, you need to do a couple of

things:

• Get the code, either from the projects for this chapter or from the

website.

• Add the source code for TouchXML and Tidy to your project.

• Add the libxml2 library to your linked libraries.

• Add the libxml2 header path to your header search path.

The TouchXML code includes the code for Tidy, so if you grabbed the

code from TouchXML’s website or from the code bundle for the book,

you have the Tidy code. Let’s look at adding the code to your project so

you can use it instead of the parser.

First we need to add a group for TouchXML and then add a group

under TouchXML for Tidy. Select the project, Ctrl+click, and choose

Add > New Group. Name the group TouchXML. Select the group, right-

click, and choose Get Info. On the General tab, click the Choose button

near the Path item. Create a new folder called TouchXML, select it,

and hit the Choose button. Repeat the steps for the Tidy group, select

the TouchXML group, right-click, choose Add > New Group, name it

Tidy, and specify its path is the Tidy folder. Here is a screenshot of the

TouchXML folder in our project:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 478

Depending on where you got the code, the directory structure will be

different. If you are grabbing the code from the book’s source bundle,

then everything is under the TouchXML directory and the Tidy direc-

tory under that. If you are grabbing the source from the TouchXML

project site, the TouchXML code is under Common/Source and Com-

mon/Source/Creation. The Tidy source is under Externals/tidy/src and Exter-

nals/tidy/include. You need all the files from both TouchXML and Tidy.

In the Finder, select all the files for TouchXML, and drag them into the

TouchXML group in Xcode. When prompted, make sure to select the

“copy files” checkbox. Do the same for the Tidy files, dragging them

into the Tidy group, and make sure to copy them as well. When you are

done, Xcode should look roughly like this:

Now that we have all the code, we need to tell Xcode where to find the

libXML2 headers. Select your target under the Targets group. Right-

click or C-click the item, and choose Get Info. On the Build tab, type

header s into the search field, and you should see something like the

next screenshot.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


MAP ANNOTATIONS 479

Double-click the line that reads Header Search Paths. In the sheet that

pops up, click the + button, and type /usr/include/libxml2 into the Path

column. When you are done, it should look like this:

Click the OK button, and you should be able to build with TouchXML

and Tidy as part of your project.

There are other ways to approach this; we could instead make a static

library from the TouchXML and Tidy source, but that is beyond what

we will cover.

Now that we have TouchXML set up and running, let’s take a look at

the AddressGeocoder class and how it uses TouchXML to get an address

back from one of the geocoding services.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
iPhone SDK Development’s Home Page

http://pragprog.com/titles/amiphd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/amiphd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/amiphd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/amiphd
www.pragprog.com/catalog



