
Extracted from:

iPhone SDK Development
Building iPhone Applications

This PDF file contains pages extracted from iPhone SDK Development, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Bill Dudney and Chris Adamson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-25-5

ISBN-13: 978-1-934356-25-8

Printed on acid-free paper.

P2.0 printing, December 2009

Version: 2010-2-3

http://www.pragprog.com


MODELING 224

11.4 Modeling

Now that we have seen the way the template has set up Core Data

for us, let’s start fleshing out our application by building our managed

object model.

The managed object model is a central part of how Core Data interacts

with your model. Core Data uses the entity when it translates between

the world of Objective-C and the world of SQLite. The model is similar to

the schema of your database with a little bit of extra information about

how to translate from Objective-C to SQL and back. Roughly speaking,

each entity corresponds to a table in the database, and each attribute

corresponds to a column in that table. On the Objective-C side, each

entity corresponds to a class, and each attribute corresponds to a prop-

erty on that class. There is, of course, a ton of detail behind how a MOM

is used to map objects into rows, and vice versa, but you don’t have to

fully understand all that thanks to the great tools available in Xcode.

Let’s take a quick look at the UI. Double-click Conference.xcdatamodel

in Xcode. You should see something that looks more or less like this

screenshot:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


MODELING 225

We are going to modify this template data model so it captures our Track

and Session entities. Roughly speaking, we need to accomplish these

tasks:

• Change the template-provided Event entity to the Track entity.

• Add the name and trackAbstract attributes and the sessions relation-

ship to the Track entity.

• Create the Session entity.

• Add the name, sessionAbstract, and sessionID attributes and the track

relationship to the Session entity.

• Generate the Track and Session classes and add them to the project.

With these two entities and the relationship between them modeled,

Core Data will have the information it needs to make them persistent.

Start by renaming the Event entity to Track. Select the entity; then in the

Entity Attributes inspector, change the name from Event to Track. Also,

change the class name from NSManagedObject to Track. Track has two

attributes, name and trackAbstract. Both of them are strings with no

constraints (length, regex, and so on). Add them by selecting the + but-

ton under the properties list (the list to the right of the entity list) and

choosing Add Attribute. When you have added them, you should have

something that looks roughly like this:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


MODELING 226

Make sure you turn off Optional for each of the attributes. Although

this is not necessary, it will help make sure that no bogus data makes

it into our database. As you have probably noticed, there are lots of

other ways we can customize the constraints that Core Data will place

on our attributes. For example, if we were to provide a regular expres-

sion (also known as a regex) in the Attributes inspector, Core Data

would ensure that whatever value was placed in that attribute matches

the regex before it saved the value. If the value fails any of the con-

straints, a validation error is raised. We can use the error to create a

user visible/understandable message to show so the user knows what

to fix. We are not going to take the time to go into detail on that, but the

Core Data documentation [App09b] has more information on presenting

errors to your users.

Now that we have the Track entity, we need to create the Session entity.

Under the list of entities (where Track currently shows up on the top-

left side), click the + button. Rename the new entity to Session, change

its class name to Session, and add three string attributes: sessionID,

name, and sessionAbstract. Again, all the Session attributes should have

no constraints, and the Optional switch should be turned off. When

you are done, you should have something that looks like this:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


MODELING 227

Now that we have the two entities set up, we need to create the relation-

ship between them. Select the Track entity, and click the + button under

the property list (top-left side). Choose Add Relationship, and name the

new relationship sessions. Make the relationship’s destination the Session

entity, choose the to-many checkbox, and make sure the delete rule

is Cascade. Next we need to add the inverse relationship to the Session

entity. Select the Session entity, add a relationship, name it track, set its

destination to Track, and choose its inverse to be sessions. Set the delete

rule on the new relationship to Nullify, and turn Optional off. When you

are done, the model should look something like this:

Our next step is to generate the classes that will be used to represent

this model in our application. In Xcode, add a new group called Model

Classes, and select it. Go back to the model, select all the entities with

D-a, and then choose File > New File from the menu. Select the Man-

aged Object Class from the dialog box that pops up, as in the next

screenshot.4

4. If you don’t have the model editor as the front window when you select the File > New

File menu item, you won’t see the Managed Object Class option in the New File Wizard.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


MODELING 228

Click Next on the next page of the wizard. You don’t need to change

anything here, but make sure the Conference target is selected. On the

final page of the wizard, make sure the checkbox next to Session and

Track is selected so that the generator uses both our entities when it

makes the classes. The page should look like this:

After you click the Finish button, you should have a header and imple-

mentation file for both the Track and Session classes.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


MODELING 229

Let’s take a look at the code the generator made for us. Here is the

header file for the Session class:

Download CoreData/Conference02/ModelClasses/Session.h

@class Track;

@interface Session : NSManagedObject {

}

@property (nonatomic, retain) NSString * sessionID;

@property (nonatomic, retain) NSString * name;

@property (nonatomic, retain) NSString * sessionAbstract;

@property (nonatomic, retain) Track * track;

@end

Not much that is unexpected here. The generator created a property for

each of the attributes and relationships in the model, all of them set to

retain their object values. Next let’s look at the implementation. Here is

the code from the .m file:

Download CoreData/Conference02/ModelClasses/Session.m

@implementation Session

@dynamic sessionID;

@dynamic name;

@dynamic sessionAbstract;

@dynamic track;

@end

This file has very little substance too. The new and interesting piece

is the use of @dynamic for the properties. This declaration says to the

compiler that the properties will have get/set method pairs provided for

them at runtime, so the compiler does not need to provide them. Core

Data provides these methods for us, so we don’t have to worry about

them.

Let’s look at the Track class next. Here is the header file:

Download CoreData/Conference02/ModelClasses/Track.h

Line 1 @class Session;
-

- @interface Track : NSManagedObject {
- }
5

- @property (nonatomic, retain) NSString * trackAbstract;
- @property (nonatomic, retain) NSString * name;

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Session.h
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Session.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Track.h
http://www.pragprog.com/titles/amiphd


TRACK TABLE VIEW 230

- @property (nonatomic, retain) NSSet* sessions;
-

10 @end
-

- @interface Track (CoreDataGeneratedAccessors)
- - (void)addSessionsObject:(Session *)value;
- - (void)removeSessionsObject:(Session *)value;

15 - (void)addSessions:(NSSet *)value;
- - (void)removeSessions:(NSSet *)value;
- @end

The top half is probably what you expected, which is a property for every

attribute and relationship in the entity. The CoreDataGeneratedAcces-

sors category might be new, however, so let’s look at it in a bit more

detail. An Objective-C category is a way for us to add methods to an

object. On line 12, the CoreDataGeneratedAccessors category is declared

for the Track class. All the methods declared in this category (until the

@end) become part of the interface. Now let’s look at the implementa-

tion:

Download CoreData/Conference02/ModelClasses/Track.m

@implementation Track

@dynamic trackAbstract;

@dynamic name;

@dynamic sessions;

@end

Not much here. . . the methods that are declared in the CoreDataGener-

atedAccessors category are generated by Core Data at runtime (thus the

name of the category). We need only the category in the header file so

that we can call the methods without a compiler warning. This little bit

of Objective-C magic is brought to you by Key-Value Coding (KVC). The

Apple Key-Value Coding [App08e] documentation has a bunch of the

detail. For now, though, you can ignore the detail and just know that

you can call addSessionsObject: on any instance of Track.

Now that we have our model in place, Core Data will be able to persist

it. Let’s look at the code needed to make the Track table view work.

11.5 Track Table View

The good thing is you already know how table views work. They ask

their data source for the number of sections, for the number of rows

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Track.m
http://www.pragprog.com/titles/amiphd


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
iPhone SDK Development’s Home Page

http://pragprog.com/titles/amiphd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/amiphd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Track.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd



