
Extracted from:

Your Code as a Crime Scene
Use Forensic Techniques to Arrest Defects,

Bottlenecks, and Bad Design in Your Programs

This PDF file contains pages extracted from Your Code as a Crime Scene, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Your Code as a Crime Scene
Use Forensic Techniques to Arrest Defects,

Bottlenecks, and Bad Design in Your Programs

Adam Tornhill

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-038-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 11

Norms, Groups, and False Serial Killers
Part II showed you how to analyze high-level designs and architectures. We
based the techniques on the concept of temporal coupling. You learned to
use temporal coupling to evaluate how well your software architecture supports
the modifications you make to the code.

We also discussed how you can use that information to detect structural
decay, supervise test-automation efforts, and guide your design discussions.
You also saw how the hotspot analyses from Part I complement your new
forensic code skills. As far as technology goes, you’re set with what you need
to uncover the mysteries of your codebase.

But large-scale software projects are more than technical problems. Software
development is also a social activity. Programming involves social interactions
with our peers, customers, and managers. Those interactions range from
individual conversations to important decisions made in large groups.

Just as you want to ensure that your software architecture supports the way
you evolve your system, you also want to ensure that the way you organize
your work aligns with how the system is structured.

How well you and your team fare on these social aspects influences how your
system looks. That’s why social psychology is just as important to master as
any programming language. In this final part of the book, you’ll learn about
social biases, how you can predict bugs from the way we work, and how to
build a knowledge map of your codebase. And just as before, we’ll mine sup-
porting data from our version-control systems.

We’ll start with the social biases. These biases may lead to disastrous deci-
sions, which is why you want to be aware of them and recognize them. We’ll
then to see how we gather objective data on the social aspects of software

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

development to inform our decisions about team organization, responsibilities,
and our process. Let’s start in the middle of a criminal investigation.

Learn Why the Right People Don’t Speak Up
In the early 1990s, Sweden had its first serial killer. The case led to an
unprecedented manhunt. Not for an offender—he was already locked up—but
for the victims. There were no bodies.

A year earlier, Thomas Quick, incarcerated in a mental institution, started
confessing to one brutal murder after another. The killings Quick confessed
to were all well-known unsolved cases.

Over the course of some hectic years, Swedish and Norwegian law enforcement
dug around in forests and traveled all across the country in search of hard
evidence. At the height of the craze, they even emptied a lake. Yet not a single
bone was found.

This striking lack of evidence didn’t prevent the courts from sentencing Quick
to eight of the murders. His story was judged as plausible because he knew
detailed facts that only the true killer could’ve known. Except Quick was
innocent. He fell prey to powerful cognitive and social biases.

The story about Thomas Quick is a case study in the dangers of social biases
in groups. The setting is much different from what we encounter in our daily
lives, but the biases aren’t. The social forces that led to the Thomas Quick
disaster are present in any software project.

See How We Influence Each Other
We’ll get back to the resolution of the Quick story soon. But let’s first under-
stand the social biases so we can prevent our own group disasters.

When we work together in a group to accomplish something—for example, to
design that amazing web application that will knock Google Search down—we
influence each other. Together, we turn seemingly impossible things into
reality. Other times, the group fails miserably. In both cases, the group exhibits
what social scientists call process loss.

Process loss is the theory that groups, just as machines, cannot operate at
100 percent efficiency. The act of working together has several costs that we
need to keep in check. These costs are losses in coordination and motivation.
In fact, most studies on groups find that they perform below their potential.

Chapter 11. Norms, Groups, and False Serial Killers • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

So why do we choose to work in groups when it’s obviously inefficient? Well,
often the task itself is too big for a single individual. Today’s software products
are so large and complex that we have no other choice than to build an
organization around them. We just have to remember that as we move to
teams and hierarchies, we pay a price: process loss.

When we pay for something, we expect a return. We know we’ll lose a little
efficiency in all team efforts; it’s inevitable. (You’ll learn more about coordina-
tion and communication in subsequent chapters.) What’s worse is that social
forces may rip your group’s efforts into shreds and leave nothing but broken
designs and bug-ridden code behind. Let’s see what we can do to avoid that.

Learn About Social Biases
Pretend for a moment that you’ve joined a new team. On your first day, the
team gathers to discuss two design alternatives. You get a short overview
before the team leader suggests that you all vote for the best alternative.

It probably sounds a little odd to you. You don’t know enough about the initial
problem, and you’d rather see a simple prototype of each suggested design
to make an informed decision. So, what do you do?

If you’re like most of us, you start to look around. You look at how your col-
leagues react. Since they all seem comfortable and accepting of the proposed
decision procedure, you choose to go along with the group. After all, you’re
fresh on the team, and you don’t want to start by rejecting something everyone
else believes in. As in Hans Christian Andersen’s fairy tale, no one mentions
that the emperor is naked. Let’s see why. But before we do, we have to address
an important question about the role of the overall culture.

Isn’t All This Group Stuff Culture-Dependent?
Sure, different cultures vary in how sensitive they are to certain biases. Most
research on the topic has focused on East-West differences. But we don’t
need to look that far. To understand how profoundly culture affects us, let’s
look at different programming communities.

• Click HERE to purchase this book now. discuss

Learn Why the Right People Don’t Speak Up • 7

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Take a look at the code in the speech balloon. It’s
a piece of APL code. APL is part of the family of
array programming languages. The first time you
see APL code, it will probably look just like this
figure: a cursing cartoon character or plain line
noise. But there’s a strong logic to it that results
in compact programs. This compactness leads to
a different mindset.

The APL code calculates six lottery numbers, guaranteed to be unique, and
returns them sorted in ascending order.1 As you see in the code, there are no
intermediate variables to reveal the code’s intent. Contrast this with how a
corresponding Java solution would look.

Object-oriented programmers value descriptive names such as randomLotteryNum-
berGenerator. To an APL programmer, that’s line noise that obscures the real
intent of the code. The reason we need more names in Java, C#, or C++ is
that our logic—the stuff that really does something—is spread out across
multiple functions and classes. When our language allows us to express all
of that functionality in a one-liner, our context is different, and it affects the
way we and our community think.

Different cultures have different values that affect how their members behave.
Just remember that when you choose a technology, you also choose a culture.

Understand Pluralistic Ignorance
What just happened in our fictional example is that you fell prey to pluralistic
ignorance. Pluralistic ignorance happens in situations where everyone privately
rejects a norm but thinks that everyone else in the group supports it. Over
time, pluralistic ignorance can lead to situations where a group follows rules
that all of its members reject in private.

We fall in this social trap when we conclude that the behavior of our peers
depends on beliefs that are different from our own, even if we behave in an
identical way ourselves. That’s what happened around Andersen’s naked
emperor. Because everyone praised the emperor’s new clothes, each individ-
ual thought they missed something obvious. That’s why they chose to conform
to the group behavior and play along with the praise of the wonderful clothes
they couldn’t see.

1. http://en.wikipedia.org/wiki/APL_(programming_language)

Chapter 11. Norms, Groups, and False Serial Killers • 8

• Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/APL_(programming_language)
http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Another common social bias is to mistake a familiar opinion for a widespread
one. If we hear the same option repeatedly, we come to think of that opinion
as more prevalent than it really is. As if that wasn’t bad enough, we fall for
the bias even if it’s the same person who keeps expressing that opinion
(source: Inferring the popularity of an opinion from its familiarity: A repetitive
voice can sound like a chorus [WMGS07]).

This means it’s enough with one individual, constantly expressing a strong
opinion, to bias your whole software development project. It may be about
technology choices, methodologies, or programming languages. Let’s see what
you can do about it.

Challenge with Questions and Data
Most people don’t like to express deviating opinions, but there are exceptions.
One case is when our minority opinion is aligned with the group ideal. That
is, we have a minority opinion, but it deviates from the group norm in a pos-
itive way; the group has some quality it values, and we take a more extreme
position and value it even more. In that setting, we’re more inclined to speak
up, and we’ll feel good about it when we do.

• Click HERE to purchase this book now. discuss

Understand Pluralistic Ignorance • 9

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Within our world of programming, such “good” minority opinions may include
desired attributes such as automatic tests and code quality. For example, if
tests are good, then testing everything must be even better (even if it forces
us to slice our designs in unfathomable pieces). And since code quality mat-
ters, we must write code of the highest possible quality all the time (even
when prototyping throwaway code).

Given what we know about pluralistic ignorance and our tendency to mistake
familiar opinions for common ones, it’s easy to see how these strong, deviating
opinions may move a team in a more extreme direction.

Social biases are hard to avoid. When you suspect them in your team, try
one of the following approaches:

• Ask questions: By asking a question, you make others aware that the
proposed views aren’t shared by everyone.

• Talk to people: Decision biases like pluralistic ignorance often grow from
our fears of rejection and criticism. So if you think a decision is wrong
but everyone else seems fine with it, talk to your peers. Ask them what
they like about the decision.

• Support decisions with data: We cannot avoid social and cognitive biases.
What we can do is to check our assumptions with data that either supports
or challenges the decision. The rest of this book will arm you with several
analyses for this purpose.

If you’re in a leadership position, you have additional possibilities to guide
your group toward good decisions:

• Use outside experts to review your decisions.
• Let subgroups work independently on the same problem.
• Avoid advocating a specific solution early in the discussions.
• Discuss worst-case scenarios to make the group risk-aware.
• Plan a second meeting upfront to reconsider the decisions of the first one.

These strategies are useful to avoid groupthink (source: Group Process, Group
Decision, Group Action [BK03]). Groupthink is a disastrous consequence of
social biases where the group ends up supressing all forms of internal dissent.
The result is group decisions that ignore alternatives and the risk of failure,
and that give a false sense of consensus.

As you’ve seen, pluralistic ignorance often leads to groupthink. This seems
to be what happened in the Thomas Quick case.

Chapter 11. Norms, Groups, and False Serial Killers • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Witness Groupthink in Action
Let’s get back to our story of Thomas Quick. Quick was sentenced for eight
murders before he stopped cooperating in 2001. Without Quick’s confessions,
there was little to do—remember, there was no hard evidence in any of the
murder cases. It took almost ten years for the true story to unfold.

What had happened was that Thomas Quick was treated with a pseudoscien-
tific version of psychotherapy back in the 1990s. The therapists managed to
restore what they thought were recovered memories. (Note that the scientific
support for such memories is weak at best.) The methods they used are almost
identical to how you implant false memories. (See The Paradox of False
Memories, on page ?.) Quick also received heavy dozes of benzodiazepines,
drugs that may make their users more suggestible.

The murder investigation started when the therapists told the police about
Quick’s confessions. Convinced by the therapists’ authority that repressed
memories were a valid scientific theory, the lead investigators started to
interrogate Quick.

These interrogations were, well, peculiar. When Quick gave the wrong answers,
he got help from the chief detective. After all, Quick was fighting with repressed
memories and needed all the support he could get. Eventually, Quick got
enough clues to the case that he could put together a coherent story. That
was how he was convicted.

By now, you can probably see where the Thomas Quick story is heading. Do
you recognize any social biases in it? To us in the software world, the most
interesting aspects of this tragic story are in the periphery. Let’s look at them.

Know the Role of Authorities
Once the Quick scandal with its false confessions was made public, many
people started to speak up. These people, involved in the original police
investigations, now told the press about the serious doubts they’d had from
the very start. Yet few of them had spoken up ten years earlier, when Quick
was originally convicted.

The social setting was ideal for pluralistic ignorance—particularly since the
main prosecutor was a man of authority and was convinced of Quick’s guilt.
He frequently expressed that opinion and contributed to the groupthink.

From what you now know about social biases, it’s no wonder that a lot of
smart people decided to keep their opinions to themselves and play along.
Luckily, you’ve also got some ideas for how you can avoid having similar sit-

• Click HERE to purchase this book now. discuss

Witness Groupthink in Action • 11

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

uations unfold in your own teams. Let’s add one more item to that list by
discussing a popular method that often does more harm than good—brain-
storming.

Move Away from Traditional Brainstorming
If you want to watch process loss in full bloom, check out any brainstorming
session. It’s like a best-of collection of social and cognitive biases. That said,
you can be productive with brainstorming, but you need to change the format
drastically. Here’s why and how.

The original purpose of brainstorming was to facilitate creative thinking. The
premise is that a group can generate more ideas than its individuals can on
their own. Unfortunately, research on the topic doesn’t support that claim.
On the contrary, research has found that brainstorming produces fewer ideas
than expected and that the quality of the produced ideas may suffer as well.

The are several reasons for the dramatic process loss. For example, in brain-
storming we’re told not to criticize ideas. In reality, everyone knows they’re
being evaluated anyway, and they behave accordingly. Further, the format
of brainstorming allows only one person at a time to speak. That makes it
hard to follow up on ideas, since we need to wait for our time to talk. In the
meantime, it’s easy to be distracted by other ideas and discussions.

To reduce the process loss, you need to move away from the traditional
brainstorming format. Studies suggest that a well-trained group leader may
help you eliminate process loss. Another promising alternative is to move to
computers instead of face-to-face communication. In that setting, where social
biases are minimized, electronic brainstorming may actually deliver on its
promise. (See Idea Generation in Computer-Based Groups: A New Ending to
an Old Story [VDC94] for a good overview of the research.)

Now you know what to avoid and watch out for. Before we move on, take a
look at some more tools you can use to reduce bias.

Discover Your Team’s Modus Operandi
Remember the geographical offender-profiling techniques you learned back
in Learn Geographical Profiling of Crimes, on page ?? One of the challenges
with profiling is linking a series of crimes to the same offender. Sometimes
there’s DNA evidence or witnesses. When there’s not, the police have to rely
on the offender’s modus operandi.

Chapter 11. Norms, Groups, and False Serial Killers • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

A modus operandi is like a criminal signature. For example, the gentleman
bandit you read about in Meet the Innocent Robber, on page ?, was charac-
terized by his polite manners and concern for his victims.

Software teams have their unique modus operandi, too. If you manage to
uncover it, it will help you understand how the team works. It will not be
perfect and precise information, but it can guide your discussions and deci-
sions by opening new perspectives. Here’s one trick for that.

Use Commit Messages as a Discussion Basis
Some years ago, I worked on a project that was running late. On the surface,
everything looked fine. We were four teams, and everyone was kept busy. Yet
the project didn’t make any real progress in terms of completed features.
Soon, the overtime bell began to ring.

Luckily, there was a skilled leader on one of teams. He decided to find out
the root cause of what was holding the developers back. I opted in to provide
some data as a basis for the discussions. Here’s the type of data we used:

Until now, we have focused our techniques around the code you’re changing.
But a version-control log has more information. Every time you commit a
change, you provide social information.

• Click HERE to purchase this book now. discuss

Discover Your Team’s Modus Operandi • 13

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Have a look at the word cloud. It’s created from the commit messages in the
Craft.Net repository by the following command:

prompt> git log --pretty=format:'%s'
Merge pull request #218 from NSDex/master
Don't add empty 'extra' fields to chat msg JSON
Fix Program.cs
Revert "Merge pull request #215 from JBou/master"
...

The command extracts all commit messages. You have several simple alter-
natives to visualize them. The one was created by pasting the messages into
Wordle.2

If we look at the commit cloud, we see that certain terms dominate. What
you’ll learn right now is by no means scientific, but it’s a useful heuristic: the
words that stand out tell you where you spend your time. For the Craft.Net
team, it seems that they get a lot of features in, as indicated by the word
“Added,” but they also spend time on “Fixing” code.

On the project I told you about—the one that was running late and no one
knew why—the word cloud had two prominent words. One of them highlighted
a supporting feature of less importance where we surprisingly spent a lot of
time. The second one pointed to the automated tests. It turned out the teams

2. http://www.wordle.net

Chapter 11. Norms, Groups, and False Serial Killers • 14

• Click HERE to purchase this book now. discuss

http://www.wordle.net
http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

were spending a significant portion of their workdays maintaining and
updating tests. This finding was verified by the techniques you learned in
Chapter 9, Build a Safety Net for Your Architecture, on page ?. We could then
focus improvements on dealing with the situation.

What story does your own version-control log tell?

Commit Messages Tell a Story
Commit clouds are a good basis for discussion around our process and daily
work. The clouds present a distilled version of our team’s daily code-centered
activities. What we get is a different perspective on our development that
stimulates discussions.

What we want to see in a commit cloud is words from our domain. What we
don’t want to see is words that indicate quality problems in code or in our
process. When you find those indications, you want to drill deeper.

But commit messages have even more to offer; A new line of research proposes
that commit messages tell something about the team itself. A team of
researchers found this out by analyzing commit messages in different open-
source projects with respect to their emotional content. The study compared
the expressed emotions to factors such as the programming language used,
the team location, and the day of the week. (See Sentiment analysis of commit
comments in GitHub [GAL14].)

Among other findings, the results of the study point to Java programmers
expressing the most negative feelings, and distributed teams the most positive.

The study is a fun read. But there’s a serious topic underpinning it. Emotions
play a large role in our daily lives. They’re strong motivators that influence
our behavior on a profound level, often without making us consciously aware
of why we react the way we do. Our emotions mediate our creativity, teamwork,
and productivity. As such, it’s surprising that we don’t pay more attention to
them. Studies like this are a step in an important direction.

Data Doesn’t Replace Communication

Given all fascinating analyses, it’s easy to drown in technical
solutions to social problems. Just remember that no matter how
many innovative data analyses we have, there’s no replacement
for actually talking to the rest of the team and taking an active
role in the daily work. The methods in this chapter just help you
ask the right questions.

• Click HERE to purchase this book now. discuss

Discover Your Team’s Modus Operandi • 15

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Mine Organizational Metrics from Code
In this chapter, you learned about process loss and that groups never perform
at their maximum potential. As such, teamwork and organizations are
investments we pay for, and they should be considered as such.

You also learned that groups are sensitive to social biases. You saw that there
are biases in all kinds of groups—software development included—and you
need to be aware of the risks.

That leads us to the challenges of scaling software development. As we go
from a small group of programmers to interdependent teams, we increase the
coordination and communication overhead, which in turn increases the risk
for biased decisions. As such, the relative success of any large-scale program-
ming effort depends more on the people on the project than it does on any
single technology.

Over the next chapters, you’ll learn about fascinating research findings that
support this view. As you’ll see, if you want to know about the quality of a
piece of software, look at the organization that built it. You’ll also learn how
to mine and analyze organizational data from your version-control system.

So please keep the social biases in the back of your head as you read along;
by using the techniques you’re about to learn, you’ll get information to help
you make informed decisions and challenge groupthink. Let’s start with how
the number of programmers affects code quality.

Chapter 11. Norms, Groups, and False Serial Killers • 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

