
Extracted from:

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

This PDF file contains pages extracted from Software Design X-Rays, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

Adam Tornhill

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Adaobi Obi Tulton
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-272-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

The World of Behavioral Code Analysis
Welcome, dear reader—I’m happy to have you here! Together we’ll dive into
the fascinating field of evolving software systems to learn how behavioral code
analysis helps us make better decisions. This is important because our
average software project is much less efficient than it could be.

The history of large-scale software systems is a tale of cost overruns, death
marches, and heroic fights with legacy code monsters. One prominent reason
is technical debt, which represents code that’s more expensive to maintain
than it should be. Repaying technical debt is hard due to the scale of modern
software projects; with hundreds of developers and a multitude of technologies,
no one has a holistic overview. We’re about to change that.

In this book, you learn a set of techniques that gives you an easily accessible
overview of your codebase, together with methods to prioritize improvements
based on the expected return on investment. That means you’ll be comfortable
with picking up any large-scale codebase, analyzing it, and suggesting specific
refactorings based on how the developers have worked with the code so far.

Good code is as much about social design as it is about technical concerns.
We reflect that by learning to uncover organizational inefficiencies, resolve
coordination bottlenecks among teams, and assess the consequences of
knowledge loss in your organization.

Why You Should Read This Book
We can never reason efficiently about a complex system based on its code alone.
In doing so we miss out on long-term trends and social data that are often more
important than any property of the code itself. This means we need to under-
stand how we—as an organization—interact with the code we build.

This book shows you how as you learn to do the following:

• Use data to prioritize technical debt and ensure your suggested improve-
ments pay off.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

• Identify communication and team-coordination bottlenecks in code.

• Use behavioral code analysis to ensure your architecture supports your
organization.

• Supervise the technical sprawl and detect hidden dependencies in a
microservice architecture.

• Detect code quality problems before they become maintenance issues.

• Drive refactorings guided by data from how your system evolves.

• Bridge the gap between developers and business-oriented people by high-
lighting the cost of technical debt and visualizing the effects of refactorings.

If all this sounds magical, I assure you it’s not. Rather than magic—which is
usually a dead end for software—this book relies on data science and human
psychology. Since we’re part of an opinionated industry, it’s hard to know up
front what works and what doesn’t. So this book makes sure to include refer-
ences to published research so that we know the techniques are effective
before attempting them on our own systems.

We also make sure to discuss the limitations of the techniques, and suggest
alternative approaches when applicable. As noted computer scientist Fred
Brooks pointed out, there’s no silver bullet. (See No Silver Bullet—Essence
and Accident in Software Engineering [Bro86].) Instead, view this book as a
way of building a set of skills to complement your existing expertise and make
decisions guided by data. The reward is a new perspective on software devel-
opment that will change how you work with legacy systems.

Who Is This Book For?
To get the most out of this book you should be an experienced programmer,
technical lead, or software architect. The most important thing is that you
have worked on fairly large software projects and experienced the various
pains and problems we try to solve in the book.

You don’t have to be a programming expert, but you should be comfortable
looking at small code samples. Most of our discussions are on a conceptual
level and since the analyses are technology-neutral, the book will apply no
matter what programming language you work with. This is an important
aspect of the techniques you’re about to learn, as most of today’s systems
are polyglot codebases.

You should also have experience with a version-control system. The practical
examples assume you use Git, but the techniques themselves can be used

The World of Behavioral Code Analysis • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

with other version-control tools, such as Subversion, TFS, and Mercurial, by
performing a temporary migration to Git.1

How Should You Read This Book?
The book progresses from smaller systems to large-scale codebases with
millions of lines of code and thousands of developers. The early chapters lay
the foundation for the more complex analyses by introducing fundamental
concepts like hotspots and dependency analyses based on time and evolution
of code. This means you’ll want to read the first three chapters to build a
solid toolset for tackling the more advanced material in Part II.

The last two chapters of Part I, Chapter 4, Pay Off Your Technical Debt, on
page ?, and Chapter 5, The Principles of Code Age, on page ?, travel deeper
into real code and are the most technical ones in the book. Feel free to skip
them if you’re more interested in maintaining a high-level strategic view of
your codebase.

We’ll touch on the social aspects of code early, but the full treatment is given
in the first chapters of Part II. Modern software development is an increasingly
collaborative and complex effort, so make sure you read Chapter 6, Spot Your
System’s Tipping Point, on page ?, and Chapter 7, Beyond Conway’s Law,
on page ?.

No analysis is better than the data it operates on, so whatever path you chose
through the book, make sure to read Know the Biases and Workarounds for
Behavioral Code Analysis, on page ?, which explains some special cases
that you may come across in your work.

Most chapters also contain exercises that let you practice what you’ve learned
and go deeper into different aspects of the analyses. If you get stuck, just
turn to Appendix 4, Hints and Solutions to the Exercises, on page ?.

Access the Exercise URLs Online

Most exercises contain links to interactive visualizations and
graphs. If you’re reading the printed version of this book you can
access all those links from a document on my homepage instead
of typing them out by hand.2

1. https://git-scm.com/book/it/v2/Git-and-Other-Systems-Migrating-to-Git
2. http://www.adamtornhill.com/code/xrayexercises.html

• Click HERE to purchase this book now. discuss

How Should You Read This Book? • vii

https://git-scm.com/book/it/v2/Git-and-Other-Systems-Migrating-to-Git
http://www.adamtornhill.com/code/xrayexercises.html
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

To Readers of Your Code as a Crime Scene
If you have read my previous book, Your Code as a Crime Scene [Tor15], you
should be aware that there is an overlap between the two books, and Software
Design X-Rays expands upon the previous work. As a reader of my previous
book you will get a head start since some topics in Part I, such as hotspots
and temporal coupling, are familiar to you. However, you will still want to
skim through those early chapters as they extend the techniques to work on
the more detailed level of functions and methods. This is particularly
important if you work in a codebase with large source-code files that are
hard to maintain.

Joe asks:

Who Am I?
Joe is a reading companion that shows up every now and then to question the argu-
ments made in the main text. As such, Joe wants to make sure we leave no stone
unturned as we travel the world of behavioral code analysis.

How Do I Get Behavioral Data for My Code?
The techniques in this book build on the behavioral patterns of all the pro-
grammers who contribute to your codebase. However, instead of starting to
collect such data we want to apply our analyses to existing codebases. Fortu-
nately, we already have all the data we need in our version-control system.

Historically, we’ve used version control as a complicated backup system that—
with good fortune and somewhat empathic peers—allows several programmers
to collaborate on code. Now we’ll turn it inside out as we see how to read the
story of our systems based on their historical records. The resulting information
will give you insights that you cannot get from the code alone.

As you read through the book, you get to explore version-control data from
real-world codebases; you’ll learn to find duplicated code in the Linux kernel,3

detect surprising hidden dependencies in Microsoft’s ASP.NET Core MVC
framework,4 do some mental gymnastics as we look at a refactoring of Google’s
TensorFlow codebase,5 and much more.

3. https://en.wikipedia.org/wiki/Linux_kernel
4. https://www.asp.net/mvc
5. https://www.tensorflow.org/

The World of Behavioral Code Analysis • viii

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Linux_kernel
https://www.asp.net/mvc
https://www.tensorflow.org/
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

These codebases represent some of the best work we—as a software commu-
nity—are able to produce. The idea is that if we’re able to come up with pro-
ductivity improvements in code like this, you’ll be able to do the same in your
own work.

All the case studies use open source projects hosted on GitHub, which means
you don’t have to install anything to follow along with the book. The case
studies are chosen to reflect common issues that are found in many closed-
source systems.

Time Stands Still

The online analysis results represent the state of the codebases
at the time of writing, and a snapshot of each repository is available
on a dedicated GitHub account.6 This is important since popular
open source projects evolve at a rapid pace, which means the case
studies would otherwise become outdated faster than this week’s
JavaScript framework.

Most case studies use the analysis tool CodeScene to illustrate the examples.7

CodeScene is developed by Empear, the startup where I work, and is free to
use for open source projects.

We won’t spend any time learning CodeScene, but we’ll use the tool as a portfolio
—an interactive gallery. This saves you time as you don’t have to focus on the
mechanics of the analyses (unless you want to), and guarantees that you see
the same results as we discuss in the book. The results are publicly accessible
so you don’t have to sign up with CodeScene to follow along.

I make sure to point out alternative tooling paths when they exist. Often we
can go a long way with simple command-line tools, and we’ll use them when
feasible. I also point out third-party tools that complement the analyses and
provide deeper information. Finally, there’s another path to behavioral code
analysis through the open source tool Code Maat that I developed to illustrate
the implementation of the different algorithms. We cover Code Maat in
Appendix 2, Code Maat: An Open Source Analysis Engine, on page ?.

Finally, think of tooling as the manifestation of ideas and a way to put them
into practice. Consequently, our goal in this book is to understand how the
analyses work behind the scenes and how they help solve specific problems.

6. https://github.com/SoftwareDesignXRays
7. https://codescene.io/

• Click HERE to purchase this book now. discuss

How Do I Get Behavioral Data for My Code? • ix

https://github.com/SoftwareDesignXRays
https://codescene.io/
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

Online Resources
As mentioned earlier, the repositories for the case studies are available on a
dedicated GitHub account. Additionally, this book has its own web page where
you can find the community forum.8 There you can ask questions, post
comments, and submit errata.

With the tooling covered, we’re ready to explore the fascinating field of evolving
systems. Let’s dig in and get a new perspective on our code!

@AdamTornhill

Malmö, Sweden, March 2018

8. https://pragprog.com/book/atevol

The World of Behavioral Code Analysis • x

• Click HERE to purchase this book now. discuss

https://pragprog.com/book/atevol
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

