
Extracted from:

Pragmatic Project Automation
How to Build, Deploy, and Monitor

Java Applications

This PDF file contains pages extracted from Pragmatic Project Automation,

one of the Pragmatic Starter Kit series of books for project teams. For more

information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).

This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and printer

versions; the content is otherwise identical.

Copyright c© 2004 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

Chapter 1

Introduction
This is the book your computer didn’t want published. Until

now, your computer has had a life of leisure: reading email,

displaying web pages, and maybe even compiling Java code.

Meanwhile you’ve been on the treadmill doing repetitive, mun-

dane, and downright boring tasks that take away time from

delivering valuable software and seeing your family.

Simply put, this book tells you how to put this thing called

a computer to work doing some of that mundane (but impor-

tant) project stuff. That means you’ll have more time and

energy to do the really exciting—and challenging—stuff, such

as writing quality code. In other words, we’ll task computers

to do what they’re good at, leaving us to do what we do well.

But aside from the obvious efficiency gains, automation also

makes our project’s procedures consistent and repeatable so

that we spend less time debugging problems. How does this

play out in real life? Let’s start with a story....

1.1 Look Ma, No Hands!

Today we find Fred, our favorite programmer, working on

his company’s flagship product, the document management

system, or DMS for short. OK, so “document management

system” might be what Fred calls it on his resumé. It’s really

just a collection of HTML files that can be indexed and then

searched. Fred chuckles as he thinks of how much venture

capital (VC) money his company could have raised in 1998

just for promoting something by that name.

LOOK MA, NO HANDS! 2

But it’s 2004, and a cool product name and a web site just

don’t cut it. These days you actually have to demonstrate

working software to loosen the VC purse strings. Speaking of

which, Fred is in charge of preparing a demo for the venture

capitalists tomorrow at noon. There’s just one problem: By

that time tomorrow Fred will be a few state lines away from

the office. In fact, his RV is out in the parking lot right now,

gassed up for a trip to the yearly family reunion in Kansas.

Just as soon as he adds this last feature, Fred and his family

will hit the road.

It Works on My Machine

Fred can already taste the barbecue sauce as he finishes up

the last bit of code. He presses the Compile button on his

favorite IDE. No errors. Then he runs all his local unit tests,

and they pass. So far, so good. Now for the grand finale. Fred

checks out the latest version of the rest of the project from the

version control system to set up for an integration test. Then

he touches off a build by running the project’s build script.

WooHoo! The build succeeded. Fred is reminded once again

that he’s the world’s greatest programmer. So he commits

his changes, grabs his lunch pail, and races for the elevator.

In the morning, all his team needs to do to deploy the demo

is run the deployment script. They may even have time for

a game of foosball before the venture capitalists show up at

noon. Life is good as Fred, the missus, and all the rugrats

crawl into the Winnebago and drive out of town.

Somewhere Out on I-70...

Fred has the pedal to the metal as the RV lumbers down I-70

in the dead of night. Just as the kids have dozed off, Fred

is startled back into reality by a beep of his cell phone. It’s

a text message sent from the scheduled build process on the

build machine back at the office, hundreds of miles in Fred’s

rearview mirror. When it woke up and tried to run a build, it

failed. Fred grimaces as he reads the error message. In his

haste he forgot to check in a new source file.

Prepared exclusively for a Pragmatic Client

LOOK MA, NO HANDS! 3

Fred leaves a voice mail for his faithful teammate Barney, let-

ting him know that he’ll need to check in the file before the

demo. And then Fred goes back to counting mile markers.

The Next Morning

Barney strolls into the office a tad late the next morning. The

whole team had worked hard preparing for the demo all week,

so last night they celebrated by downing some brews at the

bowling lanes. Checking voice mail is the last thing on what’s

left of Barney’s mind. He’ll return phone calls after the demo.

But he can’t help but notice the boiling red bubbles in one of

the Lava Lamps that the team uses to indicate the build sta-

tus.1 Oh no! The scheduled build has failed. When they left

work last night, the green lamp was bubbling. “What could

have happened?” Barney wonders as he checks the build sta-

tus web page. It tells him that since the last successful build,

one person has checked in code...Fred! The error message

says he forgot to check in a file.

Back on Solid Ground

Perhaps it’s time for Barney to check voice mail. He listens as

Fred sheepishly explains that a local file on his machine needs

to be checked in for the build to work. Having checked in the

missing file, Barney wants some confidence that everything

is in place for the demo. So he forces an independent build

on the build machine. He also cranks up the frequency of

scheduled builds so that Fred can’t get so far away next time

before finding out the build failed.

Everything compiles, and the tests pass on the build machine.

Barney then runs a script that automatically creates a release

branch containing the current versions of all files in version

control, builds and tests the release branch, creates a distri-

bution file, and deploys it into the demo web server.

After running the deployment script, Barney clicks through a

few pages of the demo to make sure it looks right. Then he

takes an early lunch before folks show up for the demo.

1Don’t worry, you’ll learn how to light up your own Lava Lamps in Sec-

tion 6.2, Getting Feedback from Visual Devices, on page 128.

Prepared exclusively for a Pragmatic Client

TYPES OF AUTOMATION 4

Then, Right Before the Demo...

Barney’s pager goes off just as he’s finishing his brontosaurus

burger. The demo site has crashed. How does he know this?

Well, Barney has been burned by demos crashing before. And

when he has an itch, he finds some way to scratch it.

Before going to lunch, Barney hooked up a simple monitor to

the demo web page. It automatically inspects the site every

couple of minutes looking for an error message. If it finds

one, it notifies Barney by sending him a text page. Fred gets

the same text message on his cell phone, but he’s up to his

elbows in barbecued spareribs.

This time it looks like somebody shut down the database on

the demo machine. Thankfully, there’s time to straighten that

out before the big demo.

A Happy Ending

Today we find Fred, Wilma, Barney, and the whole crew down

at the bowling lanes high-fiving over the huge success of last

week’s demo. They all laugh at themselves for being in the

stone age of automation for so long. “1998 called,” Fred jokes.

“It wants all its manual, repetitive, boring work back.”

Sure, Fred learned his lesson about missing files—but more

important, he and his team learned to appreciate all the auto-

mation that’s watching their backs. It was automation that

reduced the risk of a failed demo by notifying them early when

problems popped up, wherever they were. It was automation

(and version control) that saved them time by giving them a

consistent and repeatable way to build and deploy their code.

They’ll prepare for a lot more demos and (if things go well)

production releases after this. Automation will pay for itself

many times over. That’s what this book is all about.

1.2 Types of Automation

In a short amount of time, Fred and his team experienced the

three primary types of automation shown in Figure 1.1 on the

next page. Let’s look at each of those in detail.

Prepared exclusively for a Pragmatic Client

TYPES OF AUTOMATION 5C o m m a n d e d A u t o m a t i o nS c h e d u l e dA u t o m a t i o n T r i g g e r e dA u t o m a t i o n
Figure 1.1: TYPES OF AUTOMATION

• Commanded automation. This happens anytime you run

a command and the computer performs a set of tasks

in a consistent and repeatable manner. For example,

Fred ran a build script, and it attempted to generate a

build just as it would on any machine. The computer

remembered exactly how to do all the build steps for

Fred, and everyone else on the project. Likewise, Barney

ran a script that carried out the lock-step instructions

for deploying the application consistently.

• Scheduled automation. Once you can get automation by

running a command, then you can put that command on

a schedule so that nobody has to run it manually. Fred

forgot to check in a file, but even though he was miles

away the scheduled build ran on time and notified him

of the problem.

• Triggered automation. Commands can also be automat-

ically run when some important event happens. For

example, every time a file is checked in to version con-

trol a formatting script could be automatically run. Trig-

gered automation is frequently associated with a sched-

uled task. For example, Barney wanted to reduce the

risk of the demo site not being ready, but he didn’t have

time to continuously check the site. So he ran a monitor

that periodically watched the site for an error event that

then triggered his pager.

Prepared exclusively for a Pragmatic Client

QUESTIONS ABOUT AUTOMATION 6

Because the team made effective use of all three types of auto-

mation while preparing for the demo, they got feedback at

each of the stages: building, deploying, and monitoring their

software. Imagine how stressful it might have been for the

team otherwise.

1.3 Questions About Automation

Before diving into automation, it’s only natural to have ques-

tions. Let’s look at some common ones.

What Do I Need to Get Started?

The automation techniques used on Fred’s project were fairly

simple and inexpensive, but they didn’t come for free. The

team needed a few basic things in place before they could

capitalize on automation.

• Version control. A central repository for all the files in

their project gave the team a place to synchronize all

their work. This in turn gave the build machine a sin-

gle source from which the project could be built. Using

version control also allowed Barney to create a snapshot

of all the files used to build the demo so that the same

demo can be reproduced at any time in the future. Ver-

sion control is covered in detail in [TH03].

• Automated tests. Running automated tests—tests that

check their own results—gave the team confidence in

their code base. Fred ran automated tests on his local

machine before checking in code to version control. The

tests also ran as part of the scheduled build on the build

machine to check that all the project code worked in

harmony. Barney then ran the same automated tests

to verify that the code in the release branch was ready

for distribution. At each step in the project life cycle,

from writing code to deploying a new release, the auto-

mated tests were run to gain confidence before moving

on. Indeed, automated tests are the underpinning of

effective project automation. Writing good automated

tests is covered in detail in [HT03].

Prepared exclusively for a Pragmatic Client

QUESTIONS ABOUT AUTOMATION 7

• Scripting. The team needed to write a few shell scripts

(or batch files) to train the computer how to automate

procedures. And while you can use programming lan-

guages such as Java for automation, a simple shell script

is quicker to write, simpler to debug, and doesn’t require

a build process. Throughout this book we’ll look at sev-

eral scripting examples that make it easy for beginners

to follow along.

• Communication devices. Automation helped the team

communicate and get feedback even while they were on

the go. Email and web pages are standard communi-

cation tools on software projects, but all too often they

get ignored. It was a Lava Lamp that captured Barney’s

attention. Cell phones and text pagers let you get notifi-

cations on the road (or at the beach). Thankfully, we’re

surrounded by such communication devices these days,

and in this book we’ll put them to good use.

Why Should I Automate Something?

Frankly, you’ve got better things to do than piece together

builds, follow checklists full of release commands, copy files

around on servers, and monitor running programs. So auto-

mation will give you back something you don’t have enough

of: time. And with the global competition for development

work heating up, you have to be as productive as possible.

Better yet, automation will give you confidence because auto-

mated procedures are accurate, consistent, and repeatable.

People just aren’t as good at repetitive tasks as machines.

You run the risk of doing it differently the one time it matters,

doing it on one machine but not another, or doing it just plain

wrong. But the computer can do these tasks for you the same

way, time after time, without bothering you. You don’t have to

fear something bad happening when you hit the Enter button.

Automation also reduces the need for documentation. Rather

than explaining to a new team member all the steps that go

into making a build or generating a release, you just show her

how to run a script. And if she’s interested, the script has all

the details.

Prepared exclusively for a Pragmatic Client

QUESTIONS ABOUT AUTOMATION 8

Automation changes the way you work. Not only does it make

your job easier, it also enables you to perform critical project

procedures as often as you should.

When Do I Automate Something?

The simple answer is that you should apply automation when-

ever you’ve grown tired of doing something manually. Some

folks have higher boredom thresholds than others. As a rule

of thumb, manual procedures that will be run more than twice

should be automated. Odds are the third time won’t be the

last.

Errors follow naturally from boredom, so if a repeated manual

procedure needs to be accurate and consistent, then it’s time

for automation.

But remember, this book is about being pragmatic. Never

spend more time developing an automated solution than the

time the solution will ultimately save.

When Should Automation Run?

The frequency of automation varies with the procedure being

automated. For example, the build process is commanded

automation that runs whenever we want to create a build.

Scheduled builds, on the other hand, should run as often as

necessary to give us timely feedback about the health of our

software. The scheduled build we’ll set up will run many times

a day.

Releasing and deploying applications will occur on a less fre-

quent basis, in phase with the project’s release cycle. When

we have enough new features or bug fixes, we run a command

to generate a release and possibly another command to deploy

new software to a server.

Monitoring can happen in real time such as when an event is

triggered or in a polling loop with a configurable interval.

In the road map that follows, each procedure we automate

includes a suggestion of its frequency.

Prepared exclusively for a Pragmatic Client

ROAD MAP 9O n e � S t e p B u i l d s(O n C o m m a n d)C o m p i l eT e s t S c h e d u l e d B u i l d s(H o u r l y)C h e c k o u tC o m p i l e &T e s tE m a i lI n s t a l l a t i o n &D e p l o y m e n t(M o n t h l y)I n s t a l lT e s tA u t o MU p d a t eD e l i v e r M o n i t o r i n g(C o n t i n u o u s l y)V i s u a lD e v i c e sR S Sl o g 4 jC e l l P h o n e /P a g e r(W e e k l y)T e s tP a c k a g eR e l e a s eB r a n c hP u s h � B u t t o n R e l e a s e s
Figure 1.2: AUTOMATION ROAD MAP

1.4 Road Map

Figure 1.2 shows the procedures we’ll visit. We’ll start with

one-step builds that can be run by everyone on your team.

Then we’ll put the build on a schedule so we always have fresh

software. When it’s ready to be released, we’ll push a button

to cut a new distribution. Finally, we’ll make that distribution

available to our customers through an automated installation

process. Throughout this cycle we’ll set up monitors that alert

us to problems that require our attention.

Prepared exclusively for a Pragmatic Client

