
Extracted from:

Pragmatic Project Automation
How to Build, Deploy, and Monitor

Java Applications

This PDF file contains pages extracted from Pragmatic Project Automation,

one of the Pragmatic Starter Kit series of books for project teams. For more

information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).

This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and printer

versions; the content is otherwise identical.

Copyright c© 2004 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

Chapter 3

Scheduled Builds

It claims to be fully automatic, but

actually you have to push this little

button here.

Gentleman John Killian

A one-step build process is a gift that keeps on giving. Every

time you push the button that runs a build, it will feel like

you’re getting something for free. This is the beauty of com-

manded automation. Invest just a wee bit of time and get lots

of time back. In this chapter we’ll take the next automation

step: letting a computer push the build button for us.

Scheduled automation takes the one-step build you created

and runs it for you, as often as you want, without you ever

lifting a finger. You can still run the build manually if you

need to, but in the typical case the computer will do it for

you. And it turns out that having a machine running builds

continuously does more than just save some typing.

Scheduled builds find both integration (compile time) and fail-

ing test (run time) problems quickly because they run at regu-

lar intervals. For example, if the schedule says to run a build

at the top of every hour, then every 60 minutes you’ll know

if the build is broken. This makes finding problems easier

because you have to look only at changes that occurred in that

interval. It also makes fixing problems easier because little

problems don’t have a chance to compound into big problems.

And because finding and fixing problems is easier, you’re less

constrained by fear.

How is a scheduled build any different from, say, all the pro-

grammers running the build file every few minutes? Well, I

don’t know many programmers that want to do that. They’ve

usually got better things to do. The build cycle might take

SCHEDULING YOUR FIRST BUILD 43

a few minutes, or even a few hours, and running it inter-

feres with their work. And even if everyone on the team could

quickly run a full build, they might deliberately put off doing

so because they have a deadline to meet and they’re afraid

someone else’s changes might conflict and cause delays. That

is, unlike a scheduled build, programmers typically only build

parts of the system at a time rather than testing that the entire

system is integrated.

A scheduled build, on the other hand, has nothing better to

do than build and test everything. Once you have a one-step

build process, you have much to gain by putting it on a sched-

ule for a computer to run. Thankfully, it doesn’t cost much to

go this extra mile. It will end up costing a lot in the end if you

don’t start scheduling builds early. So let’s get cracking!

3.1 Scheduling Your First Build

Scheduling a build is similar to programming the timer that

controls your office building’s heating system. You want it to

start warming up the place before you’re out of bed so that

you can arrive to a toasty office. In the same way, you want to

come into the office with a nice toasty build waiting for you.

Since you can schedule a build to run at a time or frequency

of your choosing, why pick just one time every day? You may

as well schedule it to run often so you’ll know sooner if your

world is collapsing. You want to hear those processors grind-

ing as background noise while you’re writing code. It’s the

sound of software being tested. It’s the sound of everyone’s

time being saved. And that’s music to our ears.

Scheduling with cron

The easiest way to schedule a build would be to start by writ-

ing a script or batch file that does the following:

1. Checks out the current code from version control.

2. Calls your build file to build and test the code.

3. Squirrels away the build results in a log file.

Prepared exclusively for a Pragmatic Client

SCHEDULING YOUR FIRST BUILD 44

Next you need to run the build script at some predefined time

of day (or night). On Unix, the scheduler of choice is cron. To

configure cron, type

$ crontab -e

This pops open your default editor, the computer’s subtle way

of asking you what you want it to do and when it should be

done. Say, for example, you have a build.sh script that runs

your Ant build.xml file. You want cron to run that script at 2

a.m. every morning. To appease cron’s cryptic syntax, type

the following line into your editor and save the file:

0 2 * * * $HOME/work/dms/build.sh

Each crontab entry is a single line with six fields. The first

five fields represent the schedule, starting from the left: the

minute (0–59), the hour (0–23), the day of the month (1–31),

the month (1–12), and the day of the week (0–6). A * character

in any field means to match all possibilities. For example,

using * in the third field means that we want it to run every

day of the month. The last field specifies the command to run.

If you’re on a Windows box, the built-in scheduler is the at

command. To schedule the build.bat file to run at 2 a.m. every

morning, for example, type the following at the command line:

at 02:00 /every: c:\work\dms\build.bat

That’s really all there is to it! You just scheduled a build. The

computer wakes up about the time most authors are going to

bed and runs the build, no questions asked.

Picking the Right Tool for the Job

If cron (or at) gets the job done, then why not just use it and

move on? It would feel good to check one more thing off the

automation checklist. That’s a fair question, especially since

this is a book about being pragmatic. Creating a continuous

build is less about tools than it is about building continu-

ously. We could start with the simplest tool first, then haul

out the commercial-grade tools when, and if, we need them.

There’s just one problem: Being pragmatic also means using

the right tool for the job. And the simplest tool isn’t always

the right tool. If you start with a simple shell script such

Prepared exclusively for a Pragmatic Client

SCHEDULING YOUR FIRST BUILD 45

The Cost of Not Integrating Frequently

It seems that many projects don’t have, and claim
to not be able to afford, a machine dedicated to
automatically building and testing their software on
a regular interval. Ironically, these same projects can
afford to continuously spend time fighting integration
and quality problems.

Just how much programmer time does it take to jus-
tify the cost of a dedicated build machine? Consider
that on average a ten-person development team
costs your company at least $500 per hour. If that
team spends merely two hours debugging integration
problems over the life of the project, you’ve paid for
a respectable build machine fully capable of com-
piling and testing code. That’s a one-time expense.
Then when you start to consider that every day your
team is debugging integration problems is another
day late to market, you just can’t afford not to have
a dedicated build machine.

A dedicated build machine will help your team con-
serve time for the really important stuff. If you don’t
already have one on your software project, then
you’re behind the competition.

as build.sh, it will likely begin as a few commands: check out

the project from version control, run the Ant build file, and

redirect the build output somewhere useful.

And then you might decide that emailing the build results

to the team would be beneficial to let everyone know how

things are going. Better yet, why not publish the build result

in HTML for viewing in a browser? Oh, and then you will

need a web application that shows all previous build results.

Before long you’re spending more time maintaining your “sim-

ple” script than you are writing production code.

That’s where being pragmatic comes in again. If you want

a build scheduler with all these fancy features, and you can

get it for free, then you should use it rather than spend time

creating and maintaining your own scheduler. And if that

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 46

scheduler is also open source, then you have the option of

extending it for any of your special needs later, if necessary.

In that pragmatic spirit, let’s take a drive with a scheduler

designed to build Java applications. We’ll take it one milepost

at a time.

3.2 Putting a Build on CruiseControl

CruiseControl1 is like cron for Ant, but with many bells and

whistles. It runs in the background, waking up on cue to run

any scheduled Ant targets.

Bear in mind, what CruiseControl does for us isn’t rocket sci-

ence. You could do all this stuff manually if you were bored

and didn’t mind being pigeonholed as the build guru on your

project. It’s also nothing a custom build script couldn’t do if

you wanted to write one and be its maintainer for life. But

we’re short on time as it is, and maybe even behind schedule.

Reinventing all the scheduling features we need that come for

free out of the CruiseControl box isn’t going to save us any

time. CruiseControl isn’t the only such tool either, but we’ll

use it because it meets our needs here.

Choosing a Build Machine

Before installing CruiseControl you need to find a suitable

home for it. The machine where you install CruiseControl will

be the workhorse for scheduled builds, but it doesn’t need to

be top-o’-the-line hardware that breaks your bank. You just

need it to compile source code and run tests. That’s slightly

more CPU intensive than reading email and surfing the web,

but less so than servicing thousands of concurrent users. If

build machines filled out personal want ads, you’re looking

to hook up with the beautiful bucket of bits described in Fig-

ure 3.1 on the following page.

That being said, I realize all the good machines on your project

may not be available. If you’re lucky enough to find available

machines waiting to be put to work, then this decision is easy.

Just snag the best one you can and enlist it into service for

1http://cruisecontrol.sourceforge.net

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 47B u i l d i n g R e l a t i o n s h i p s : I ' m a s i n g l e � p r o c e s s o r , m i d d l e � a g e b i tt w i d d l e r (S P M A B T) s e e k i n g a l o n g � l a s t i n g r e l a t i o n s h i p w i t h a s t a b l ep r o v i d e r o f d a t a w h o c a n h a n d l e c h a n g e . M y f r i e n d s s a y I ' m r e s o u r c e f u lb e c a u s e I c a n a c c e s s v e r s i o n c o n t r o l r e p o s i t o r i e s . U n l i k e t h o s e j e t �s e t t i n g l a p t o p s , I e n j o y s t a y i n g a t t h e o f f i c e 2 4 h o u r s a d a y . T h e l a s tt i m e I w a s r e b o o t e d w a s m o r e t h a n 7 d a y s a g o , b u t I b o u n c e d r i g h tb a c k . I l o o k f o r w a r d t o m e e t i n g y o u f a c e t o f a c e o r w e c a n c h a td i s c r e e t l y o v e r o n e o f m y m a n y r e m o t e i n t e r f a c e s .T u b u l a r l o v e : S W F s e e k s T V f o r f u n a n d r o m a n c e . L i k e s d a y t i m et e l e v i s i o n , r e a l i t y s h o w s , a n d a n y t h i n g i n v o l v i n g a n i m a l s e a t i n g t h i n g s .R e m o t e r e l a t i o n s h i p p r e f e r r e d . C a l l , b u t o n l y w h e n t h e r e ' s n o t h i n gw o r t h w a t c h i n g . 5 5 5 � 6 5 2 7C h e c k m e o u t : U n i t t e s t s e e k s c o d e f o r o n g o i n g r e l a t i o n s h i p . I k n o wI c a n b e d e m a n d i n g a n d t r y i n g , b u t l e t m e c h e c k y o u o u t � y o u ' l l f e e lb e t t e r f o r i t . 5 5 5 � 8 0 1 7
Figure 3.1: WANTED: A DREAM BUILD MACHINE

your project. It’s happy to be wanted by someone. If you’re not

so lucky, then consider two-timing with a machine already in

service.2

And if you just can’t find those spare CPU cycles anywhere

on your project, then feel free to mention to your manager

how inexpensive good hardware is these days. This will go

over better than mentioning how expensive programmers are

in comparison.

Installing CruiseControl

Now that you’ve found a suitable build machine, you’re ready

to introduce it to CruiseControl. This is somewhat like making

a new friend only to turn around and offer him a shovel, but

trust that we have good intentions here.

When you download CruiseControl, you get a ZIP file. Extract

this file into a directory which we’ll refer to as $CC HOME. Then

you need to build CruiseControl; on Unix type

$ cd $CC HOME/main

$ sh build.sh

2To temporarily convert a PC into a Linux box without reconfiguring the

PC, check out Knoppix (http://www.knoppix.net). It’s a Linux distribution

that boots and runs completely from a CD. Presto, change-o!

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 48

CruiseControl.NET

If you’re writing code on the Microsoft .NET platform
and using NAnt to build your project, here’s another
opportunity to follow along. CruiseControl.NET∗ is a
feature port of CruiseControl to the .NET platform. It
integrates with the NAnt build tool and the NUnit unit-
testing framework. And we’d be remiss if we didn’t
mention the optional CCTray utility that shows a green
or red build status icon in your Windows system tray.

∗http://ccnet.thoughtworks.com

Under Windows, the commands are similar.

$ cd %CC HOME%\main

$ build.bat

The script then compiles and tests CruiseControl. (Notice that

this is commanded automation at work.) When it’s done,

you’ll end up with a file called cruisecontrol.jar in the direc-

tory $CC HOME/main/dist. That file needs to be there to run

CruiseControl later.

Preparing a Build Workspace

Next, you need to prepare a workspace on the build machine.

This will be the directory from which CruiseControl will run

builds and store the results. We’ll walk through creating the

workspace step by step.

Create the Build Directory

The build workspace is a directory on the build machine. Let’s

assume we call that directory builds because it’s the workspace

for all of our scheduled builds. The easiest approach is to

create the builds directory in some user’s home directory on

the build machine. On Unix, log in as that user and type

$ mkdir ˜/builds

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 49b u i l d s / c h e c k o u t /l o g s / d m s /c c ^ b u i ld . x m lc o n f ig . x m l
Figure 3.2: THE BUILD WORKSPACE

Check Out the Project

So far, we only have one project to build on a schedule: our

DMS project. It’s safely stored in CVS and needs to be checked

out locally for CruiseControl to use. To keep the top-level

builds directory tidy, check out the dms module into a checkout

subdirectory.

$ cd ˜/builds

$ mkdir checkout

$ cd checkout

$ cvs co dms

This assumes that your CVSROOT environment variable is set

to the location of your CVS repository. After running these

commands the checkout/dms directory will contain all of the

files in the dms project. This is a local copy of the project—a

snapshot of the project at this instant of time. We’ll use this

directory just to prime the scheduled build process.

Create a Log Directory

Finally, create a directory that will contain all of the Cruise-

Control build log files.

$ cd ˜/builds

$ mkdir logs

Now you have a cozy workspace for scheduled builds. Fig-

ure 3.2 shows the directory structure just created. Next, you

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 50

need to create the cc-build.xml and config.xml files shown in

that directory structure. We’ll start by writing the cc-build.xml

file.

Writing a Delegating Build File

When your scheduled build runs, it should

1. Delete the last build.

2. Check out the current project from CVS.

3. Run the build.

That is, we want to run a “scorch-the-Earth” build. Start-

ing from scratch each time helps avoid the strangeness that

inevitably happens with incremental builds. When a build

runs successfully from scratch, you get more confidence that

it’s complete. And if a machine is going to run the build for

us, we can afford to be spendthrifts with its time.

You could put those three steps in a target of the existing

build.xml file. But it’s a good idea to keep the scheduled build

procedure separate from the Ant build file used to run builds

manually. To do that, create a separate Ant build file called

cc-build.xml in the builds directory. The cc-build.xml file just sets

up the checkout directory with a fresh copy of code and then

delegates the build procedure to the build.xml file.

<project name="cc-build" default="build" basedir="checkout">

<target name="build">

<delete dir="dms" />

<cvs command="co dms" />

<ant antfile="build.xml" dir="dms" target="test" />

</target>

</project> b
u

ild
s/

c
c

-b
u

ild
.x

m
l

The syntax of this build file should look familiar. It defines

an Ant project with build as the default target to run. The

basedir attribute points to the checkout directory that con-

tains a local copy of the project.

The meat of the cc-build.xml file is the build target. It first

deletes the copy of the project used during the last build to

ensure that the next build starts from scratch.

<delete dir="dms" />

It then checks out a fresh local copy of the project from the

CVS repository into the checkout/dms directory.

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 51

<cvs command="co dms" />

This form of the <cvs> task uses the value of the CVSROOT

environment variable to locate your CVS repository. Alterna-

tively, you can set the CVSROOT in the cvsRoot attribute of

the <cvs> task.

Using the repository as the sole source for the build process

means that all the build inputs need to be in CVS. The com-

puter will use the lack of any required file as an excuse for not

making good builds. For example, it won’t tolerate having to

find files littered across the filesystem or the network. Using

a version control system also means that any machine with

access to the repository is a candidate for running builds.

The build target then needs to call the project’s build file to

compile and test everything.

<ant antfile="build.xml" dir="dms" target="test" />

This is where having a one-step build process really pays

off. The <ant> task calls the test target of the build.xml file

located in the checkout/dms directory.

Test the Procedure

After writing the cc-build.xml file, it’s a good idea to test it

before handing it off to a cranky computer. To verify the dele-

gating build file works, type

$ cd ˜/builds

$ ant -buildfile cc-build.xml

Make sure to use the -buildfile option here to specify the

cc-build.xml file, since by default Ant will look for a file called

build.xml. Alternatively, you can use -f as an abbreviation for

-buildfile.

Save the Delegating Build File

You need to store the cc-build.xml file under version control so

you don’t lose it. This presents a slight conundrum because

the build file checks out the project from CVS, and yet it’s

in CVS itself. But cc-build.xml isn’t likely to be updated all

that often, so just manually check out cc-build.xml into your

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 52

builds directory whenever it’s changed. This is another benefit

to using a separate build file for CruiseControl builds, rather

than just adding a target to the main build file.

All we’ve done here is created a wrapper around our existing

build file: build.xml is wrapped by the cc-build.xml file. This

delegating build file checks out the project and builds it, just

as you’d do it from the command line.

Configuring the Build Process

Think of the cc-build.xml file as playing the role of any new pro-

grammer on the team. They show up with an empty directory,

check out the project anew, and build it with the expecta-

tion that everything will work. That is, they provide an objec-

tive second opinion as to whether the builds are successful.

Unfortunately, no one can hire enough new programmers to

get build feedback as often as needed in order to keep working

confidently. That’s where CruiseControl comes in.

Our next step is to tell CruiseControl how and when it should

run our build. By default, it looks for a configuration file

called config.xml that defines the projects it’s responsible for

building. We’ll write the config.xml file one section at a time.

The complete file is shown in Figure 3.3 on page 58.

Define the Project

Create the config.xml file in the builds directory. The first few

lines of config.xml set up the project.

<cruisecontrol>

<project name="dms" buildafterfailed="false"> b
u

ild
s/

c
o

n
fig

.x
m

l

The name attribute of the <project> element identifies this

project. Multiple projects can be defined in this file with each

project having a unique name.

By default, CruiseControl will continue to attempt to build a

project even if the build failed on the last attempt and nothing

has changed in CVS since then. This can be useful for projects

that have dependencies on external resources that might not

be available when the build runs: If at first you don’t succeed,

try and try again. But it’s overkill for this project since every-

thing it depends on is in the CVS repository. Set the value of

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 53

the buildafterfailed attribute to false so that when the

build fails the CPUs will get a chance to cool down while you

fix the problem.

Bootstrap the Build

Next, define bootstrappers—things to be done before the build bootstrappers

cycle happens.

<bootstrappers>

<currentbuildstatusbootstrapper

file="logs/dms/currentbuildstatus.txt" />

</bootstrappers>

The <currentbuildstatusbootstrapper> simply writes a mes-

sage to the logs/dms/currentbuildstatus.txt file indicating that a

build cycle has begun. Running a bootstrapper doesn’t mean

that a build will be attempted, only that CruiseControl has

awakened to check if a build is necessary. Think of it as

CruiseControl punching in for work.

Check for Changes

You want to run a build only if something has changed in the

CVS repository. After all, there’s no sense running builds if

all the programmers are away at a conference honing their

skills. Next define how CruiseControl checks for changes to

determine if a build is necessary.

<modificationset quietperiod="60">

<cvs localworkingcopy="checkout/dms" />

</modificationset>

The <modificationset> element tells CruiseControl what to

watch to see if a build is required. The project is in CVS,

so you can use the <cvs> element with the localworking-

copy attribute pointing at the local copy of the dms module.3

This means that the local directory will be used to locate the

CVS repository to determine if something has changed. This

keeps you from having to hard-code the CVSROOT in the con-

fig.xml file. The important thing to remember is that a build

3ClearCase, Subversion, StarTeam, Visual SourceSafe, and other version

control systems are also supported.

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 54

will be attempted only if something being watched by the

<modificationset> has changed.

CVS doesn’t support atomic commits, which means if you

check in 10 files they are committed in 10 separate steps.

What happens when 5 of 10 changes have been committed

when CruiseControl wakes up? It will notice that at least 5

things have changed since the last time it looked at the repos-

itory. But starting a build at this point would be problematic

because not everything has made it into the repository.

To give you a chance to get everything checked in before a

build starts, set the value of the <modificationset> element’s

quietperiod attribute to 60 seconds. This means the CVS

repository must be quiet (inactive) for 60 seconds before a

build is attempted. If CruiseControl wakes up and detects

that changes have been made to the repository during the

quiet period, it will go back to sleep and check again later.

Dial In the Build Interval

Finally, define the build interval and how a build should be

attempted.

<schedule interval="60">

<ant buildfile="cc-build.xml" target="build" />

</schedule>

The <schedule> element tells CruiseControl when to attempt

a build. Here, we set the interval attribute to 60 seconds.

This means CruiseControl will wake up every minute to check

to see if any changes have been made as indicated by the

results of the <modificationset> element. In other words, the

dms module of CVS will be polled every minute for differences.

If changes were made, but not within the quiet period, then a

build will be attempted.

The <ant> element tells CruiseControl how to run a build. In

this case, we want it to invoke the build target of our delegat-

ing build file—cc-build.xml. Recall that this build file will delete

the last build, check out a fresh copy of dms from CVS, and

then run the test target of the checkout/dms/build.xml file.

To recap what we’ve done here: Every minute CruiseControl

will check to see if something in the project has changed. If

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 55

Joe Asks. . .

How Frequently Should a Build Run?

The only limiting factor to how often you can run
the build is the length of your build cycle. Some
projects may not even finish the compile step in under
a minute. But if we can build the entire project in
less than five minutes, for example, then why not build
every five minutes?

Remember, if nobody changes code, the build just
doesn’t run. But if somebody does change code,
then wouldn’t it be nice to know as soon as possible
if all of the tests still pass? If they didn’t pass, then
you’d only have to look at the last five minutes worth
of changes to diagnose what went wrong.

On a real-world project you’ll probably have differ-
ent types of tests: unit tests, acceptance tests, per-
formance tests, etc. You don’t want to wait for all of
those tests to run just to see if your unit tests passed. To
avoid that, each type of test would have a different
Ant target and you’d configure CruiseControl to run
each target on a different schedule.

Schedule build targets to run based on how often
you want feedback about your system. For example,
you might run all the unit tests every five minutes, all
the acceptance tests every hour, and all the perfor-
mance tests once a day. It’s a game of confidence
and this computer is here to help you feel better.

so, the system will be rebuilt and all of our tests will be run,

using the latest code. Now that’s automation!

Save the Logs

CruiseControl generates a log file every time it attempts a

build. It’s a good idea to save those files so that you can

check on the build results later.

<log dir="logs/dms">

<merge dir="checkout/dms/build/test-results" />

</log>

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 56

We’ll use the logs directory created earlier as the dumping

ground for log files. The dms subdirectory will be created to

hold the dms project’s log files. That is, the build log files are

stored in a directory that isn’t deleted every build cycle.

In addition to the log files that CruiseControl generates, you

also want each build log to include the results of JUnit tests.

Unfortunately, the test output is currently being displayed

only on the console. You need to create a new test target

that, when run, will also output the JUnit test results as XML

files in the build/test-results directory of the project. This direc-

tory is used as the value of the dir attribute of the <merge>

element. CruiseControl will then merge the contents of that

directory into the build log.

Generate Test Results As XML

When we ran our tests from the command line in the previous

chapter, they output messages to the console. But when a

scheduled build is run, nobody will be watching the console.

We need to capture the test results in a format that can be

displayed to us later in the CruiseControl build log.

Let’s revisit the build.xml file and define a new build target that

will run the tests and send the output to XML files.

<target name="test" depends="compile-tests">

<delete dir="${test.xml.dir}"/>

<mkdir dir="${test.xml.dir}"/>

<junit errorProperty="test.failed"

failureProperty="test.failed">

<classpath refid="project.classpath" />

<formatter type="brief" usefile="false" />

<formatter type="xml" />

<batchtest todir="${test.xml.dir}">

<fileset dir="${build.test.dir}"
includes="**/*Test.class" />

</batchtest>

<sysproperty key="doc.dir" value="${doc.dir}" />

<sysproperty key="index.dir" value="${index.dir}" />

</junit>

<fail message="Tests failed! Check test reports."

if="test.failed" />

</target>

This test target is similar to the test target from the last

chapter, but has a few important differences. First, it always

Prepared exclusively for a Pragmatic Client

PUTTING A BUILD ON CRUISECONTROL 57

creates an empty directory to hold the JUnit test results.

<delete dir="${test.xml.dir}"/>

<mkdir dir="${test.xml.dir}"/>

The test.xml.dir property, defined in the properties sec-

tion of the build.xml file, points to the project’s build/test-results

directory. This is the directory that CruiseControl uses as the

source for merging test results into the build log.

Instead of halting on the first test failure, the <junit> task

sets a test.failed property on either an error or a failure.

<junit errorProperty="test.failed"

failureProperty="test.failed">

This makes sure that all the tests results—successes and

failures—are collected in XML files. Notice that later in the

file we use the test.failed property in the <fail> task to

alert us if one or more tests failed.

To output test results to the console and to XML files, define

both a brief and an xml formatter.

<formatter type="brief" usefile="false" />

<formatter type="xml" />

The <batchtest> task needs to be changed to include a todir

attribute. This attribute defines the output directory for the

XML files generated by the XML formatter.

<batchtest todir="${test.xml.dir}">

<fileset dir="${build.test.dir}"
includes="**/*Test.class" />

</batchtest>

Now we have a new test target that generates XML files, in

addition to showing test results on the console. CruiseControl

will use those XML files when it generates a build log. This

feature will come in handy later when we send the build status

to the team.

Publish Build Results

Finally, back in the config.xml file, you need to specify publish-

ers—things to be notified after the build cycle happens. publishers

<publishers>

<currentbuildstatuspublisher

file="logs/dms/currentbuildstatus.txt" />

</publishers>

Prepared exclusively for a Pragmatic Client

RUNNING CRUISECONTROL 58

<cruisecontrol>

<project name="dms" buildafterfailed="false">

<bootstrappers>

<currentbuildstatusbootstrapper

file="logs/dms/currentbuildstatus.txt" />

</bootstrappers>

<modificationset quietperiod="60">

<cvs localworkingcopy="checkout/dms" />

</modificationset>

<schedule interval="60">

<ant buildfile="cc-build.xml" target="build" />

</schedule>

<log dir="logs/dms">

<merge dir="checkout/dms/build/test-results" />

</log>

<publishers>

<currentbuildstatuspublisher

file="logs/dms/currentbuildstatus.txt" />

</publishers>

</project>

</cruisecontrol>

builds/config.xml

Figure 3.3: CRUISECONTROL CONFIGURATION FILE

The <currentbuildstatuspublisher> publisher simply writes a

message to the logs/dms/currentbuildstatus.txt file indicating that

the build cycle has finished. Similar to bootstrappers, the

publishers are run regardless of whether a build was actually

attempted. Think of this as CruiseControl punching out after

a hard interval’s work.

You’ve passed the test. You’re now licensed to drive on Cruise-

Control! Figure 3.3 shows the complete config.xml file.

OK, so that configuration exercise wasn’t a leisurely Sunday

drive, especially compared to the one-liner you wrote for cron.

But from this point, you can easily get a lot more than cron

offers. Moreover, now that you’ve configured CruiseControl

for the first time, you can apply the same steps to put your

other projects on a schedule.

3.3 Running CruiseControl

With the configuration file that tells CruiseControl everything

it needs to know to run our build process in hand, we’re ready

Prepared exclusively for a Pragmatic Client

RUNNING CRUISECONTROL 59

to see some action! First, navigate to the builds directory that

contains the config.xml and cc-build.xml files. Then run the

CruiseControl script. On Unix, the commands are

$ cd ˜/builds

$ $CC HOME/main/bin/cruisecontrol.sh

Under Windows, the slashes swing around.

$ cd \builds

$ %CC HOME%\main\bin\cruisecontrol.bat

CruiseControl will start up, read the config.xml file, and go

right to work.

Starting Up

When CruiseControl starts up, the output can be verbose. It

likes to let us know it’s doing something useful as a result of

our configuration effort. Here’s the important information:

projectName = [dms]

Project dms: reading settings from config file

[/Users/mike/builds/config.xml]

Project dms starting

Project dms: next build in 1 minutes

Project dms: idle

If the output you see doesn’t look so hopeful, then perhaps

you need to tweak your config.xml file. Thankfully, you don’t

have to restart CruiseControl to change the configuration. It

will reload the config.xml file every time a build cycle starts.

You can make any necessary changes and simply wait another

minute for it to notice.

Then You Wait...

Now wait patiently as 60 long seconds go by. CruiseControl

then wakes up on schedule to check if there’s any work.

Project dms: in build queue

Project dms: reading settings from config file

[/Users/mike/builds/config.xml]

Project dms: bootstrapping

Project dms: checking for modifications

Project dms: 2 modifications have been detected.

Project dms: now building

When it wakes up, it first reloads the config.xml file. Then it

checks the CVS repository and finds that something has been

modified. This being the first build cycle, CruiseControl may

Prepared exclusively for a Pragmatic Client

RUNNING CRUISECONTROL 60

or may not detect changes in your repository. It needs to

establish a baseline and you may have to change a file in your

repository to force CruiseControl to run a build. Assuming it

detects a change, it’s ready to run the build.

...Until a Build Is Attempted

This is where you finally get to experience the fruits of your

labors. At long last, you will see the one-step build process

get run automatically by the computer.

Buildfile: cc-build.xml

build:
[delete] Deleting directory /Users/mike/builds/checkout/dms

[cvs] Using cvs passfile: /Users/mike/.cvspass

[cvs] U dms/README

[cvs] U dms/build.xml
...
prepare:

[mkdir] Created dir: /Users/mike/builds/checkout/dms/build/prod

[mkdir] Created dir: /Users/mike/builds/checkout/dms/build/test

compile:

[javac] Compiling 4 source files to /Users/.../dms/build/prod

compile-tests:

[javac] Compiling 3 source files to /Users/.../dms/build/test

test:
[junit] Testsuite: com.pragprog.dms.SearchTest
...

BUILD SUCCESSFUL

A lot happened here. The build target of the cc-build.xml file

ran. It deleted the checkout/dms directory and then re-created

it by checking out the dms project from CVS.

Then the test target of the build.xml file ran. That Ant target

has dependencies on other targets, such as the compile tar-

get. As you’d expect, all the dependent targets are run prior to

running the tests. And miracle of miracles, the project built

successfully!

Having run the build, CruiseControl records the results in a

log file, notifies the publishers that indeed it showed up for

work on time, and then promptly goes back to sleep.

Project dms: merging accumulated log files

Project dms: publishing build results

Project dms: idle

Project dms: next build in 1 minutes

Once CruiseControl is started, it keeps running regardless of

whether the last build succeeded or failed. It awakens on

cue to check if a build is necessary, and if so goes about the

Prepared exclusively for a Pragmatic Client

RUNNING CRUISECONTROL 61

Joe Asks. . .

What About Anthill?

Another build scheduler that’s definitely worth explor-
ing is Anthill.∗ It’s available in either an open-source
version (Anthill OS) or, for those who need some
chrome under the hood, there’s Anthill Pro.

Opinions vary as to whether CruiseControl or Anthill
is easier to install and configure. It really depends
on what you consider easy. To run Anthill you deploy
a WAR file into your favorite servlet engine and then
configure it through a web interface. CruiseControl,
on the other hand, can be configured and run via
the command line without ever firing up a servlet
engine. It’s easier to demonstrate scheduled builds
using CruiseControl as it doesn’t require a servlet
engine.

Remember, the choice of a tool isn’t as important as
getting your build scheduled as soon as possible. So
use whatever tool helps you do that.

∗http://www.urbancode.com/projects/anthill

business of attempting a build. Then it goes to sleep until the

next build interval. Rinse and repeat. It’s a pretty dull life,

which is exactly why we’re happy not to be doing it ourselves.

Now It’s Your Turn

CruiseControl is now in its rhythmic build loop waiting for

us to do what we’re paid to do. Every minute it wakes up,

notices that we haven’t touched anything in CVS, and goes

back to sleep.

Project dms: No modifications found, build not necessary.

Project dms: idle

Project dms: next build in 1 minutes

And it’s happy to just keep doing this and enjoying a life of

leisure. But we’re not going to stand for that kind of lack-

adaisical behavior—we want to see if it’s really watching the

CVS repository and not asleep at the switch.

Prepared exclusively for a Pragmatic Client

RUNNING CRUISECONTROL 62

In the ˜/work directory, there is a checked-out local copy of the

dms project. Now we’ll change a Java source file. But suppose

in our haste we unknowingly introduce a bug. Worse yet, we

forget to run our unit tests before checking in the modified

source file.

$ cd ˜/work/dms

$ emacs src/com/pragprog/dms/Search.java

(Hack, hack, hack)

$ cvs commit -m "I’m too busy to test"

Now we wait around for the build timer to pop. When it does,

CruiseControl checks for work. Again, the output is verbose,

but it vaguely resembles the following:

1 modification has been detected.
Project dms: now building

Buildfile: cc-build.xml

build:
[delete] Deleting directory /Users/mike/builds/checkout/dms

[cvs] Using cvs passfile: /Users/mike/.cvspass

[cvs] U dms/README

[cvs] U dms/build.xml
...
prepare:
...

compile:
...

compile-tests:
...

test:
[junit] Testsuite: com.pragprog.dms.SearchTest

[junit] Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 1.957 sec

[junit] Testcase: testTitleSearch(com.pragprog.dms.SearchTest): FAILED

[junit] expected:[2] but was:[0]
...

BUILD FAILED

Uh oh! We just got busted. CruiseControl can’t do much for

us other than record the failure in the log file and tell us to fix

things before the next build interval. Rest assured, we won’t

have to spend our days monitoring the build machine. We’ll

automate the notification of a build failure through email a

bit later and explore advanced monitoring techniques in Sec-

tion 6.1, Monitoring Scheduled Builds, on page 125.

What a Scheduled Build Is Good For

We got sloppy. It happens to the best of us from time to time,

so we need somebody looking over our shoulder. In this case,

that somebody is CruiseControl. It noticed that a modification

was made to the CVS repository, and it attempted to run the

tests against those changes. But the test is expecting one

Prepared exclusively for a Pragmatic Client

PUBLISHING THE BUILD STATUS 63

value and got another, so it fails. It’s not the ideal situation,

but at least you now know there’s a problem and you can fix

it before it turns into a costly problem later.

Now before you do anything else short of breathing, you need

to get the build back to a steady state. Make the necessary

changes to the local copy of the project in the ˜/work/dms direc-

tory. And run the tests before checking in this time! Then sit

back and wait for the next build interval.

A minute later CruiseControl builds the project and confirms

that indeed you’re still the world’s greatest programmer. Bet-

ter yet, it will continue watching for changes and running all

the tests while you’re off doing what you’re good at—writing

programs.

3.4 Publishing the Build Status

The build is now running on a schedule, but you’re missing

something important. Unless a real, live human watches the

console output of CruiseControl, you won’t know when the

build breaks.

When a build fails, we’d like something to send up a flare,

sound the alarm, and start brewing a fresh pot of coffee. Fail-

ing all that, an email will do.

Sending Build Results via Email

We have a lot of options when it comes to who gets what kind

of email, but let’s keep it simple. We’re interested only in get-

ting an email when the build fails and when it has been fixed.

And once we get an email that tells us the build has failed,

we don’t care to continue getting more email until we’re back

on stable ground. Less is more in this case. If we’re con-

stantly being bombarded with build email, we’ll stop reading

them. It’s like signing up for a newsgroup. All the posts are

interesting...for the first day.

Notification by email is relatively easy with CruiseControl.4

Just add an email publisher.

4See [HL02] for details on how to send a build failure email using Ant.

Prepared exclusively for a Pragmatic Client

PUBLISHING THE BUILD STATUS 64

<htmlemail mailhost="your.smtp.host"

returnaddress="cruisecontrol@clarkware.com"
defaultsuffix="@clarkware.com"
buildresultsurl="http://localhost:8080/cruisecontrol/buildresults/dms"

css="/Users/mike/tools/cruisecontrol/reporting/jsp/css/cruisecontrol.css"

xsldir="/Users/mike/tools/cruisecontrol/reporting/jsp/xsl"

logdir="logs/dms">

<map alias="manager" address="bigcheese@clarkware.com" />

<map alias="mike" address="mike@clarkware.com" />

<map alias="fred" address="fred@somewhere.com" />

<always address="manager" />

<failure address="mike" reportWhenFixed="true" />

<failure address="fred" reportWhenFixed="true" />

</htmlemail>

Add this <htmlemail> element inside the <publishers> ele-

ment of config.xml. Even though the build is failing, we’d like

the email to be nicely formatted HTML. Figure 3.4 on the next

page shows what arrives in our inbox. Notice that it includes

test failure details because we merged our JUnit test results

into the CruiseControl log. It also lists all the modifications

that were made—and who made those modifications!—since

the last successful build. Perhaps you know where the guilty

party lives.

In the interest of sanity, we’re going to gloss over the details of

email configuration here. Most of it is self-explanatory. How-

ever, there are a few things worth noting, starting from the

top:

<htmlemail mailhost="your.smtp.host"

returnaddress="cruisecontrol@clarkware.com"
defaultsuffix="@clarkware.com"
buildresultsurl="http://localhost:8080/cruisecontrol/buildresults/dms"

css="/Users/mike/tools/cruisecontrol/reporting/jsp/css/cruisecontrol.css"

xsldir="/Users/mike/tools/cruisecontrol/reporting/jsp/xsl"

logdir="logs/dms">

The logdir directory points to the directory CruiseControl

uses for saving each build log. To format the email, it applies

a style through the formatting wonders of the css and xsldir

attributes to the latest build log. If you don’t particularly like

the default email format, you have the power of CSS and XSLT

at your fingertips.

Next, create email aliases for each user that should receive an

email.

<map alias="manager" address="bigcheese@clarkware.com" />

<map alias="mike" address="mike@clarkware.com" />

<map alias="fred" address="fred@somewhere.com" />

Prepared exclusively for a Pragmatic Client

PUBLISHING THE BUILD STATUS 65

Figure 3.4: BUILD FAILURE EMAIL

Using the <map> element, each member of our team is asso-

ciated with their corresponding email address. Without any

mappings in place, CruiseControl will use the CVS username

and the value of the defaultsuffix attribute. In this exam-

ple, it’s not necessary to map “mike” to “mike@clarkware.com”

if “mike” is a CVS user. That’s taken care of when the email

publisher applies the value of the defaultsuffix attribute.

Our manager needs to have an email address mapped because

he wants email, but he’s not a CVS user. And Fred wants his

email sent to an address different from that in the default-

suffix attribute, so we have to define a specific mapping for

him.

By default, CruiseControl sends email on a success or a fail-

ure to those folks who checked stuff in since the last success-

ful build. We can get a bit more control by defining exactly

what kind of email each mapped user receives.

Prepared exclusively for a Pragmatic Client

PUBLISHING THE BUILD STATUS 66

<always address="manager" />

<failure address="mike" reportWhenFixed="true" />

<failure address="fred" reportWhenFixed="true" />

Using the <always> element, we make sure our manager gets

an email for both successful and failed builds. That just hap-

pens to be his preference. He doesn’t make changes to CVS,

so we need to explicitly declare him as an email recipient.

All the programmers should know when the software isn’t

building. As a team, we need to get it fixed pronto. (Oh,

and a little peer pressure goes a long way on some teams.)

Use the <failure> element to list programmers as recipients

of email when the build fails. It’s also important for the pro-

grammers to know when the build is fixed, so set the value of

the reportWhenFixed attribute to true to get those emails

as rewards for fixing the build. You may want to set up an

alias in your email system for all the developers on your team

and send an email to that alias when the build fails and when

it’s fixed.

You may have noticed that the build status email includes a

“View results here” hyperlink at the top. Let’s see what that’s

all about.

Pulling Build History from a Web Page

It’s nice to have the build status forwarded via email. But

when it comes time to debug build failures, it’s also conve-

nient to have a historical record of all the builds. When you

need that information, you can pull it from a web page.

The standard CruiseControl distribution includes an optional

web reporting project in the $CC HOME/reporting/jsp directory.

Building this project creates a WAR file that can be dropped

into your favorite servlet engine, such as Tomcat.

Build and Deploy the Web Application

First, you need to define three properties that tell the web

application where to find files and directories in your build

workspace. In the $CC HOME/reporting/jsp directory, create a

file called override.properties that defines the following proper-

ties (substitute your absolute builds directory):

Prepared exclusively for a Pragmatic Client

PUBLISHING THE BUILD STATUS 67

Figure 3.5: BUILD HISTORY WEB PAGE

user.log.dir=/Users/mike/builds/logs

user.build.status.file=currentbuildstatus.txt
cruise.build.artifacts.dir=/Users/mike/builds/logs

Next, build the web application. On Unix type the following:

$ cd $CC HOME/reporting/jsp

$ sh build.sh war

This incantation creates a cruisecontrol.war file in the direc-

tory $CC HOME/reporting/jsp/dist. Deploy this WAR file into your

server. If you’re using Tomcat on Unix, for example, type

$ cp dist/cruisecontrol.war $TOMCAT HOME/webapps

View the Build History

With your server running and the CruiseControl web applica-

tion deployed, click the hyperlink at the top of a build results

email or browse to

http://buildmachine:port/cruisecontrol/buildresults/dms

This will take you to a web page similar to the one shown in

Figure 3.5.

Prepared exclusively for a Pragmatic Client

SCALING UP 68

Along the left side of this page is a list of all the builds that

were attempted. Clicking any build shows the details you see

in the right area. This is the same information you’ll see in

emails sent by the <htmlemail> publisher.

Now you have build results being pushed via email, and any-

body with access to the web server can actively pull a detailed

history of builds from a web page. That’s a good start, but

in Section 6.1, Monitoring Scheduled Builds, on page 125 we’ll

explore how to get feedback about builds in other cool and

exciting ways.

3.5 Scaling Up

If while reading this chapter you’ve been wondering if Cruise-

Control can handle all the code in your Java project, then

wonder no longer. Here’s a glimpse of CruiseControl on a

massive, real-world project:

CruiseControl on a Large Scale

by Jared Richardson, Software Manager, SAS Institute

Many people think that open-source projects can’t scale to the

enterprise level, but CruiseControl is an example of one that

does. This is our success story of how flexible and extensible

CruiseControl is.

We have approximately 800 developers working on more than

250 projects with five million lines of Java code. Some of these

projects are very low-level components, some are portlets, and

some are end-user solutions. We were able to get all five million

lines of Java code under continuous integration using

CruiseControl relatively easily. In fact, as I type this, we are

covering three code branches, so we are really covering 15

million lines of code, and the CruiseControl box is a single CPU

x86 machine.

We used a few tricks to get CruiseControl running at the

enterprise level. First, we multithreaded CruiseControl

ourselves. (Those changes should be in the next release of CC.)

This is one of the advantages of working with an open-source

project!

Next, instead of using the regular CVS modification set, we are

using the compound modification set. It contains a trigger that

initiates the build and a target that is used to actually get the

Prepared exclusively for a Pragmatic Client

SCALING UP 69

file changes. For our trigger, we use the filesystem modification

set. When a project changes in CVS, a CVS trigger touches a

single file that CruiseControl is monitoring. This prevents

CruiseControl from trying to poll CVS every ten minutes for

changes in 15 million lines of code. Once it sees that a project

trigger file has changed, it uses the regular CVS modification

set—the target in the compound modification set—to see

exactly what changes were made.

Will Gwaltney, another SAS employee, wrote the compound

modification set, and we contributed it back to the

CruiseControl project. Now anyone can use a compound

modification set, and you can use any of the CruiseControl

modification sets as either triggers or targets.

We use one trick that isn’t stock. We have a build grid at SAS

that has a number of machines behind it. We are able to ask it

to do the builds for us, and it finds an available machine. This

keeps the load of building the systems off the CruiseControl

box.

All in all, CC was very easy to roll out and is now part of the

standard Java development experience at SAS. With very little

effort, you can get this same type of coverage at your company,

no matter the size of the code base.

That’s right, Jared, no project is too big to be built on a sched-

ule! Indeed, the more code you have, the more you need con-

tinuous integration to keep it in check. After all, would you

want to be running builds of that proportion manually to get

confidence that it’s always working? You might have to use a

few clever tricks, but it’s well worth it in the end. And with

CruiseControl, you already have a powerful scheduler that’s

free. Of course, this is just the beginning of what CruiseCon-

trol can do. To learn more, visit the CruiseControl wiki.5

What We Just Did

We’ve come a long way in this chapter. We started with a one-

step build process that we previously ran manually from the

command line. Then we scheduled that command to run at

regular intervals so that the project is continually integrated

5http://confluence.public.thoughtworks.org/display/CC/Home

Prepared exclusively for a Pragmatic Client

SCALING UP 70

and tested. We can even schedule multiple Ant targets, each

running on a different schedule. The build scheduler alerts

us when the build breaks by sending email and recording the

build history on a common web page. All this makes finding

and fixing problems easier so that we have more time to do

the really exciting stuff.

Prepared exclusively for a Pragmatic Client

