
Extracted from:

Web Design for Developers
A Programmer’s Guide to Design Tools and Techniques

This PDF file contains pages extracted from Web Design for Developers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Brian P. Hogan.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in Canada.

ISBN-10: 1-934356-13-1

ISBN-13: 978-1-9343561-3-5

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2009-12-21

http://www.pragprog.com

THE HOME-PAGE STRUCTURE 123

• The web page should be accessible to everyone, regardless of web
browser, platform, or disability.

• The site meets basic usability guidelines for navigation, links, and
structure.

• Behavior is separated from the content and its presentation. Java-
Script that works on all platforms is used, and it degrades grace-
fully for platforms, devices, and users who can’t use it.

This list sounds reasonable, but how do you implement something like
this? You start by building a valid HTML document that contains your
content and defines your structure. If you’ve ever composed simple
HTML, this will be a piece of cake for you. But don’t worry: even if
you’ve never dabbled in HTML before, you’ll pick up the lessons in this
chapter quickly.

9.2 The Home-Page Structure

Try to visualize your pages as regions of content, as opposed to rows
and columns, and you’ll find it much easier to develop pages that not
only conform to standards but are also much more flexible—you want
to be able to switch out your style sheets and completely change the
layout of the page.

For Foodbox, we want all the content for our sidebar to be in its own
region, and we want all the content for our main area to be in its own
region. We’re going to do the same thing we did when we created our
mock-up—divide the page up into sections.

You can divide your mock-up into four basic regions:

• header

• sidebar

• main

• footer

These four regions are easy to identify. However, you can build a flexible
structure that you can manipulate easily if you further divide the page
into subsections. The key to accomplishing this is to look for logical
groupings of content.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bhgwad

SEMANTIC MARKUP 124

For example, let’s express the mock-up’s regions in outline form:

• Page

– Header
– Middle

* Sidebar
· Search Recipes
· Browse Recipes
· Popular Ingredients

* Main
– Footer

In this example, we have an overall region called page. We divide this
region up into a header region, a middle region, and a footer region. The
outer, or parent, region, acts as a point of reference that we can use for
positioning, and we can also control the overall page width by changing
the width of the outer region.

The sidebar and main regions are wrapped in another region called mid-

dle. Like the outer page region, this middle region acts as a reference
point, but it also serves another important purpose: it provides flexibil-
ity. We might not want a sidebar region for some of our pages; for exam-
ple, we might want a full-width main region for displaying the content
instead. On those pages, we could omit the sidebar and middle regions
and place the content right in the main region, using CSS to resize it.

This structure is fairly common. It’s the structure for your standard
two-column layout with a header and a footer, one of the most common
website types. The neat thing about standards-based design is that you
can reuse this skeleton for another project if you want to, because your
style sheets will define your column widths, colors, and other visual
elements.1

9.3 Semantic Markup

Semantic markup makes sure your document is structured so that
it can be interpreted by machines, devices, or people. For example,
Google’s web crawler uses tags such as h1 and href attributes on links
to determine the importance of web pages and their content.

1. This approach works great for skinning a website; you could use this technique to
let your users have their own themes. Visit http://www.csszengarden.com to see a great
example of a single document rendered in multiple ways.

CLICK HERE to purchase this book now.

http://www.csszengarden.com
http://www.pragprog.com/titles/bhgwad

SEMANTIC MARKUP 125

Joe Asks. . .

Can’t We Just Slice and Dice Our Mock-Up?

In the old days of web development—and by “old” I mean
those medieval times of 2004—it was common practice for
developers to take a Photoshop document and use tools like
Fireworks or ImageReady to slice the image up and generate
HTML. This approach gives you a quick-and-dirty way to make
a web page, but it also has some serious problems.

For example, it almost always involves using HTML tables for lay-
out. This was the way that every web designer built web pages
before CSS became a viable alternative. Among the many
problems with this approach was that it made life more difficult
for users who browse with screen readers.

Also, this approach doesn’t separate the content from the
design, so you can’t easily make multiple presentations of your
content available, such as a version of your site for printing and
another version customized for display on mobile devices.

Finally, and most important, using tables for layout means that
you will duplicate all the table HTML code on every page of
your site. Every time someone requests a page, that data must
be transferred to the end user. On a small-scale site, this just
means your pages might take longer to get to the end user. If
you run a site that gets lots of hits, you might start to see it in
your monthly bills from your ISP. When you host a website, you
have to pay for all the traffic that you serve, so if you have a
lot of traffic, it’s in your best interest to reduce file sizes wherever
you can.

Designing with CSS and web standards allows you to define the
look and feel of a website using files that end users download
only once but share across all the pages you serve them. This
improves performance and saves you money.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 126

You need to use HTML tags for their intended purpose so that they
describe the content they contain properly. Your page will have head-
ings, paragraphs, lists, and other elements. HTML has lots of tags that
are designed to mark up content. Headings, for example, should use
syntax something like <h1>About Us</h1>. An HTML parser will see this
tag and know it’s the most important headline on the page.

It would be completely inappropriate then to do something like <font

size="+2">About Us. Unfortunately, many developers do precisely
this because they don’t like the fact that, by default, the h1 tag places
a margin above and a line break below this tag’s content when it is
rendered.2

You can use CSS to solve the visual issues quite easily once you under-
stand how everything works. For example, you might use CSS to change
the way all headings look, or you might use it to modify the appear-
ance of a single heading on a single page. Best of all, one CSS file can
be applied to many pages, so instead of setting every heading on 100
pages, you can add a couple of lines to your style sheet.

9.4 The Home-Page Skeleton

Open your favorite text editor,3 and create a new file. Immediately save
this new blank file as index.html. The index.html page will be the home
page for the site. Web servers will serve up the index page whenever a
request comes in for a path and a page is not specified.

The Doctype

Each HTML page must have a doctype to help a validation tool ensure
you’re serving properly coded markup. It’s extremely important to make
sure you have a valid page before you apply style sheets or JavaScript.
Invalid markup can cause styles to be applied incorrectly or cause
JavaScript code to fail horribly. Your web browser relies on a well-
formed document to apply styles and behaviors properly, so failing to
close a tag might trip up a user’s browser.

More important, doctypes force certain browsers to interpret a page
differently. For example, Internet Explorer 6 has a quirks mode that is
extremely forgiving to invalid markup, but you can spend a lot of time

2. Some WYSIWYG HTML editors write code like this too, so it’s not just novices.
3. I recommend Notepad++ for Windows and TextMate for Mac.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 127

Default Page Names

Web servers have a concept called default pages. A default
page is rendered whenever a page is not specified for a direc-
tory. Web servers serve files from a directory structure. You
have pages within folders, and the universal resource locator
(URL) contains the path to the folder and file the user requests.
For example, if you requested the http://www.foo.com/products/

superwidget/about.html URL, the web server at http://www.foo.

com would look in the products/superwidget folder for a file called
about.html.

If you requested the http://www.foo.com/products/superwidget

URL, then you’ve requested an incomplete resource, so the
web server tries to figure out what you meant. First, it looks to
see what actually exists at that location on the server. If it finds
a folder there, it looks at a list of default filenames and then
checks to see whether any of those filenames exist within that
folder. Common default filenames include index.html, index.htm,
and default.htm.

If the server can’t find a default file, it might return a directory
listing, or it might return an error message if an administrator
configured the server to not allow directory listings. Many web-
masters believe that disabling directory browsing adds a level
of security to their sites; however, I don’t think you gain much
security by doing that. If you don’t want people to see some-
thing, don’t publish it to the Web.

When you link to a resource that has a default page, you should
either include the filename in the URL or use a trailing slash
after the directory name. This courtesy URL tells the server that
you are in fact requesting a directory from the server, and you
expect the server to return the default file. Courtesy URLs work
best on the home page of a site.

For maximum performance and to avoid confusion, you should
always link directly to the complete resource. Links to the Food-
box home, for example, should always end with index.html. This
way, the server can just serve that file and then get on with
handling the next request.

CLICK HERE to purchase this book now.

http://www.foo.com/products/superwidget/about.html
http://www.foo.com/products/superwidget/about.html
http://www.foo.com
http://www.foo.com
http://www.foo.com/products/superwidget
http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 128

scratching your head trying to make your page work in other browsers
that are more strict about what they will render. However, you can use
a doctype declaration that forces IE 6 into standards mode, which isn’t
perfect, but it’ll get us by.

You can choose from a few different doctypes. The doctype you use dic-
tates what tags you can use in your document, as well as the validation
rules that will be used to check your markup. The two most frequently
used doctypes are XHTML 1.0 Transitional and HTML 4.01 Strict.

XHTML 1.0 Transitional

For a long time, XHTML Transitional was considered the way to build
pages for the Web. A primary reason for its use was that it forced web
browsers into standards mode. That’s not much of an issue today, but
XHTML continues to have some advantages over regular HTML. XHTML
markup is more strict, which forces developers to think more about a
page’s structure. It also requires that you use lowercase letters when
defining tags and attributes, which can be helpful when parsing docu-
ments. Finally, it requires every tag to have a closing tag.

Unfortunately several browser support issues undercut the benefits of
using XHTML, including its extensibility. Internet Explorer does not
understand how to handle XHTML unless it’s served as HTML using
the text/html content type instead of the more appropriate application/

xhtml+xml. Serving XHTML as HTML forces browsers to deal with tag
soup; the browser expects HTML tags, but it gets XHTML instead, so
it spends time reworking the document.4 You lose a lot of the benefits
of XHTML that your users see, and these browser issues can in fact
introduce some new problems into your page. For example, self-closing
div and span tags, which are perfectly valid in XHTML, get their trailing
slash removed by browsers when served as text/html, which leaves them
unclosed, affecting all elements that follow.5

These issues have prompted some designers and developers to switch
back to using regular HTML again, in the form of HTML 4.01 Strict6 or
the HTML 5 specification.

4. http://xhtml.com/en/xhtml/serving-xhtml-as-html/

5. http://www.webdevout.net/articles/beware-of-xhtml#myths has some great examples of how
the content type affects the output of a page written in XHTML.
6. http://mezzoblue.com/archives/2009/04/20/switched/

CLICK HERE to purchase this book now.

http://xhtml.com/en/xhtml/serving-xhtml-as-html/
http://www.webdevout.net/articles/beware-of-xhtml#myths
http://mezzoblue.com/archives/2009/04/20/switched/
http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 129

HTML 4.01 Strict

We’re using HTML 4.01 Strict in this book’s examples. With HTML 4.01
Strict, elements must still adhere to a hierarchy, but case doesn’t mat-
ter, some tags don’t need to be closed, and self-closing tags don’t exist.
It’s important to remember that these are only language issues, and
they don’t make HTML’s syntax any worse or better than XHTML’s syn-
tax. As long as you make sure you validate your documents, you’ll have
no trouble with browser compatibility, user experience, accessibility,
CSS, or JavaScript.

We’ll use HTML 4.01 Strict in these examples, but I’ll make sure to
stress well-formed, valid, semantic markup. This will keep a future
transition to XHTML 1.0 Strict or HTML 5 simple. Whichever doctype
you choose to use in your work, you should realize that you almost
always serve both doctypes to browsers as HTML, so the only real dif-
ference between the two doctypes is syntactical. Don’t let yourself get
caught up in a holy war.

Adding the Doctype

Place this doctype declaration in your document. Everything else in
your document goes after the doctype.

Download homepage_html/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

Don’t bother typing it in yourself, though. Most web page editors have
a template you can use, or you can go to your favorite search engine
and search for HTML 4.01 Strict doctype to find an example.

The HTML Tag

A web page is a hierarchy of elements, much like an XML document.
The html element is the root element of the document. All other elements
in the document will reside within that element. Almost all elements in
a web page have an opening tag and a closing tag. You can think of the
opening and closing tags as scope markers, similar to curly braces in
Java.

Add the html tag to your document immediately after the doctype, and
be sure to add the closing tag. This is a good habit to get into when
you do web-page development. Add the element’s tag, immediately add
the closing tag, and then reposition the cursor between the opening
and closing tags. Forgetting an element’s closing tag results in invalid

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 130

Joe Asks. . .

Is XHTML Dead?

The W3C’s recent decision to stop work on the next version of
XHTML to focus more resources on HTML 5∗ has not killed off
XHTML 1.0. but it does show that HTML 5 is the way to go when
it comes to web markup.

The main reason many programmers and standards advocates
prefer XHTML over HTML is its strict syntax. All tags must have
closing tags, all tags and attributes must be in lowercase,
attribute values must be quoted, and stand-alone elements like
br, img, meta, and hr need a trailing slash. With the exception of
the self-closing elements, all these are perfectly legal with HTML
4.01 Strict, and you can use every one of these coding prac-
tices with HTML 5.

XHTML isn’t going to be worked on anymore, so it’s dead in
the same way that COBOL is dead—it works, and it’s not going
away any time soon. You shouldn’t rush out and convert all your
sites to HTML 4.01 Strict or HTML 5, but you should consider all
your options when you start work on a new site.

∗. http://www.w3.org/News/2009#item119

markup, which in turn causes browsers to apply your styles in strange
ways. Invalid markup also causes other web developers to break out
in a rash of expletives or, worse, punches. You should do your best to
avoid this.

Download homepage_html/index.html

<html lang="en">

</html>

Attributes

Each tag supports various attributes that you can specify within the
tag’s declaration. Attributes help describe the tag in more detail. The
html tag we used has an attribute that describes the language we use in
this document.

CLICK HERE to purchase this book now.

http://www.w3.org/News/2009#item119
http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 131

Self-closing Tags

If you’re used to XML, you might be familiar with the idea of
self-closing tags, or tags that have a trailing slash when there’s
no closing tag. The HTML 4.01 Strict doctype doesn’t support
these, but the XHTML 1.0 Strict and Transitional doctypes do,
and so does the HTML 5 doctype.

The Head and Body

You can always find two elements within the scope of the html element:
head and body. The head element contains all the metadata about the
page, including the page’s title that appears in the bookmark link and
in the browser’s title bar, as well as links to load JavaScript files, style
sheet files, and other assets. The body element contains the visible con-
tents of the web page.

Add the head tag and its associated closing tag to your document,
immediately below the html tag you just defined:

Download homepage_html/index.html

<head>

</head>

It’s a good idea to indent your tags, just as you would indent code within
an if..else statement. Doing this will help you later, when your document
gets bigger.

Add these two lines to the head element:

Download homepage_html/index.html

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Foodbox</title>

Tags Without Closing Tags

Some tags in HTML don’t have any scope because they don’t wrap any
content or perform any transformation on content. Many of these tags
can be considered content themselves.

Examples of this include the img tag, which inserts an image into the
document; the br tag, which adds a soft line break; and the hr tag, which
creates a horizontal rule.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 132

Joe Asks. . .

Aren’t You Supposed to Set the Content and Encoding in
the HTTP Headers?

You are absolutely supposed to set the headers correctly, but
some browsers use the value of the meta tag anyway, as do the
validators. Using the meta tag in the page’s source can only
help you describe your content better. Other developers can
use the value in the meta tag to see your intentions when they
follow your work.

Finally, and most important, using the meta tag lets you develop
and validate HTML that’s not served by a server. You can open
an HTML file on your hard drive, and it will render with the cor-
rect encoding.

When you do serve the file from a server, make certain that the
value for the Content-Type header matches what you specified
with the meta tag.

The meta tag is an example of a content element. This tag lets us
describe our document with metadata. In this case, we use a meta tag
to tell the browser or interpreter what character set our content will
use. Sometimes you might paste in content from another source, and
this content might contain symbols, curly quotes, or other characters
that can’t be viewed in all browsers or on all computers. Specifying a
certain character set causes HTML validators to alert us when we use
content like this.

We can use meta tags to provide more information to browsers, search
engines, and other consumers of our page. We’ll do a lot more with
these tags in Chapter 18, Search Engine Optimization, on page 257.

The Page Title

The title tag is important. The text you place within that element will
be displayed in the title bar of the web browser. It’s also used as the
default text when a person bookmarks the page, and it shows up in
the search results for most search engines. In this case, the name of
the site is good enough, but subsequent pages should have additional
text in that element, such as About This Site | Foodbox or Top Recipes |

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 133

Block and Inline Elements

Almost all elements that reside within the body tags of your
page are either block or inline elements. Understanding the dif-
ference between these types of elements can save you a lot of
time when you’re ready to style your pages with CSS.

By default, block elements begin on a new line. Examples of
block elements include div, h1, h2, h3, p, ul, li, table, and form.

Inline elements, on the other hand, are rendered on the same
line as other elements by default. Examples of inline elements
include a, b, i, span, em, strong, label, select, input, textarea, u,
and br.

You want to remember this point: block elements can contain
other block elements or inline elements. Inline elements can
contain only text and other inline elements; they cannot con-
tain block elements.∗

∗. They might render in a browser, but your page won’t be valid, and you will
have a lot of trouble applying styles or working with JavaScript later.

Foodbox. The title displays in a site’s bookmark and in the title bar, so
we want to place the site name in all the headings. However, it might get
truncated, so we also want a specific part of the title to show up first.
For example, Latest Recipes | Food... looks better to users and search
engines than Foodbox | Latest Rec... does.

The head section of the page will contain more elements as you move
closer to the finished product, but you can begin building the visible
part of the page right now. It makes no sense to do much search engine
optimization or scripting at this stage.

The Body: The Main Event

All of the visible content of your page resides within the body tag.

Add the body and closing tags to our document, leaving some space
between the tags so we have some room to work. At this point, we’ve
built a standard HTML 4.0 Strict template (see Figure 9.1, on the fol-
lowing page).

You learned how to break down the elements of the page into sections
in Section 9.2, The Home-Page Structure, on page 123. Now you have

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 134

Download homepage_html/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Foodbox</title>

</head>

<body>

</body>

</html>

homepage_html/index.html

Figure 9.1: An example of a default HTML template

to mark those sections up with code. To do that, use the div tag to
divide the page into sections. div tags are invisible elements, so they
don’t take up any visible space on the page when it’s rendered. They
do have some special properties, though. For one thing, they are block
elements, which means they begin on a new line. You can find a more
detailed explanation of block elements in the sidebar on the preceding
page.

The Page Wrapper

We can constrain all the content in the page we’re creating to our
desired width of 900px by creating a top-level region. We will place
all the other regions of the page, such as sidebar, header, and footer,
in this new region. Later, you can use this outer region as a point of
reference for all other elements. Good coders document their code, and
HTML permits comments, so add this code immediately after the open-
ing body tag:

Download homepage_html/index.html

<div id="page"> <!-- start of the page wrapper -->

</div> <!-- end of the page wrapper -->

You must give the browser some way to identify the regions of your page
so it can apply styles and behaviors. Note that the id attribute is unique

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://www.pragprog.com/titles/bhgwad

THE HOME-PAGE SKELETON 135

to the document. This means you can’t have more than one page id on
a single page. If you do, your page won’t validate, and it will likely start
doing strange things when you apply styles.

The HTML comments in that code might prove a big help later, when
the document gets longer and harder to read.

The Four Content Regions

You can use div elements to stub out the header, footer, sidebar, and
main regions of the page:

Download homepage_html/index.html

<div id="header"> <!-- start of header -->

</div> <!-- end of header -->

<div id="middle"> <!-- container for the sidebar and main region -->

<div id="sidebar"> <!-- the sidebar -->

</div> <!-- end of the sidebar -->

<div id="main"> <!-- start of main content -->

</div> <!-- end of main content -->

</div> <!-- end of middle container -->

<div id="footer"> <!-- start of the footer -->

</div> <!-- end of the footer -->

</div> <!-- end of the page wrapper -->

</body>

</html>

This example includes an extra div called middle. Whenever you have
two regions that you’ll eventually want to display side-by-side, you
should wrap those two regions with another region. It doesn’t add that
much extra markup to the document, and it makes your design more
flexible. For example, if you need to eliminate the sidebar on another
page of the site, you could omit the two inner regions and style the
outer region. Here we wrap the sidebar and main regions the same way
we wrapped the entire page.

We’ve put the structure in place, so let’s add the content.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://www.pragprog.com/titles/bhgwad

THE HEADER 136

Alternative Text

The alt attribute for images gives you an easy way to improve
the usability and accessibility of your site. Alternative text is dis-
played when images can’t be displayed. Users who are blind
rely on alternative text to describe the images to them, so it’s a
good idea to make your descriptions descriptive rather than
vague! “A blue car” isn’t as strong as “A vintage 1957 blue
Chevrolet in front of the downtown mall.”

Alternative text also comes in handy for text-based browsers
and mobile-phone users with low-bandwidth connections.
Another reason to make sure you always include good alter-
native text descriptions for your images is that search engines
use them. Search engines can’t read your images either, and
your alternative text descriptions become extremely important
at that point. I’ll cover this issue further in Section 16.2, Alterna-
tive Text Attributes, on page 233.

9.5 The Header

The content for the header region consists of only the Foodbox logo,
which we’ll include with the img tag. This tag has a src attribute that
specifies the path to the image. This path works like the href attribute
of the a tag; it can be a URL or a relative path to a file. We’ll discuss
URLs in detail in Section 9.6, The Recipes Tag Cloud, on page 139.

When placing an image on a web page, it’s always a good idea to specify
the height and width of the image. We don’t have the image right now,
so we’ll let that go for the moment; however, we definitely want to come
back later and add this. For now, specify the image source and an alt

attribute for the text. This alternate text gets displayed if the image can’t
be loaded; it’s also extremely helpful for your users who use screen-
reading software.

Place your cursor within the region defined by div id="header", and insert
the following code:

Download homepage_html/index.html

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bhgwad/code/homepage_html/index.html
http://www.pragprog.com/titles/bhgwad

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Web Design for Developers’ Home Page

http://pragprog.com/titles/bhgwad

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragprog.com/titles/bhgwad.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/bhgwad
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/bhgwad
www.pragprog.com/catalog

