
Extracted from:

HTML5 and CSS3, Second Edition
Level Up with Today’s Web Technologies

This PDF file contains pages extracted from HTML5 and CSS3, Second Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-59-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2013

http://pragprog.com

Tip 33

Finding Yourself: Geolocation

Geolocation is a technique for discovering where people are, based on their
computers’ location. Of course, “computer” really can mean smartphone,
tablet, or other portable device as well as a desktop or laptop computer.
Geolocation determines a person’s whereabouts by looking at her computer’s
IP address, MAC address, Wi-Fi hotspot location, or even GPS coordinates if
available. Although it’s not strictly part of the HTML5 specification (and never
was), Geolocation is often associated with HTML5 because it came on the
scene at the same time. Like Web Storage, it’s a very useful technology that
is already implemented in Firefox, Safari, and Chrome. Let’s see how we can
use it.

Locating Awesomeness

We’ve been asked to create a contact page for the AwesomeCo website, and
the CIO has asked whether we can show people’s location on a map along
with the various AwesomeCo support centers. He’d love to see a prototype,
so we’ll get one up and running quickly.

We’ll use Google’s Static Map API for this because it doesn’t require an API
key and we’re going to generate a very simple map. When we’re done, we’ll
have something that looks like Figure 36, Our current location is marked on
the map with a Y, on page 6.

AwesomeCo service centers are located in Portland, Oregon; Chicago, Illinois;
and Providence, Rhode Island. Google’s Static Map API makes it really easy
to plot these points on a map. All we have to do is construct an img tag and
pass the addresses in the URL, like this:

html5_geolocation/index.html
<img id="map" alt="Map of AwesomeCo Service Center locations"
src="http://maps.google.com/maps/api/staticmap?
&size=900x300
&sensor=false
&maptype=roadmap
&markers=color:green|label:A|1+Davol+square,+Providence,+RI+02906-3810
&markers=color:green|label:B|22+Southwest+3rd+Avenue,Portland,+OR
&markers=color:green|label:C|77+West+Wacker+Drive+Chicago+IL">

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bhh52e/code/html5_geolocation/index.html
http://pragprog.com/titles/bhh52e
http://forums.pragprog.com/forums/bhh52e

Figure 36—Our current location is marked on the map with a Y.

We define the size of the image, and then we tell the Maps API that we did
not use any sensor device, such as a client-side geolocation, with the informa-
tion we’re passing to this map. Then we define each marker on the map by
giving it a label and an address. We could use comma-separated pairs of
coordinates for these markers if we had them, but an address is easier for
our demonstration.

How to Be Found

We need to plot our visitor’s current location on this map, and we’ll do that
by providing latitude and longitude for a new marker. We can ask the
browser to grab our visitor’s latitude and longitude, like this:

html5_geolocation/javascripts/geolocation.js
var getLatitudeAndLongitude = function(){

navigator.geolocation.getCurrentPosition(function(position) {
showLocation(position.coords.latitude, position.coords.longitude);

});
};

This method prompts the user to provide us with her coordinates. If the visitor
allows us to use her location information, we call the showLocation() method.

The showLocation() method takes the latitude and longitude and reconstructs
the image, replacing the existing image source with the new one. Here’s how
we implement that method:

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bhh52e/code/html5_geolocation/javascripts/geolocation.js
http://pragprog.com/titles/bhh52e
http://forums.pragprog.com/forums/bhh52e

html5_geolocation/javascripts/geolocation.js
var showLocation = function(lat, lng){Line 1

var fragment = "&markers=color:red|color:red|label:Y|" + lat + "," + lng;2

var image = $("#map");3

var source = image.attr("src") + fragment;4

source = source.replace("sensor=false", "sensor=true");5

image.attr("src", source);6

};7

Rather than duplicate the entire image source code, we’ll append our location’s
latitude and longitude to the existing image’s source. Before we assign the
modified image source back to the document, we need to change the sensor
parameter from false to true. We do that on line 5 with the replace() method.

Finally, we call the getLatitudeAndLongitude() method we defined, which kicks
everything off.

html5_geolocation/javascripts/geolocation.js
getLatitudeAndLongitude();

When we bring up the page in our browser, we see our location, marked with
a Y, among the other locations.

Falling Back

As it stands, visitors without Geolocation support will still see the map with
the locations of the AwesomeCo support centers, but they’ll get a JavaScript
error since there’s no Geolocation object available. We need to detect support
for Geolocation before we attempt to get the visitor’s location. We can use
Modernizr for that, but where do we get latitude and longitude if we can’t get
it from the browser?

Google’s Ajax API does location lookup, so it’s a great fallback solution.9

Our fallback looks like this:

html5_geolocation/javascripts/geolocation.js
var getLatitudeAndLongitudeWithFallback = function(){Line 1

if ((typeof google === 'object') &&2

google.loader && google.loader.ClientLocation) {3

showLocation(google.loader.ClientLocation.latitude,4

google.loader.ClientLocation.longitude);5

}else{6

var message = $("<p>Couldn't find your address.</p>");7

message.insertAfter("#map");8

}9

};10

9. http://code.google.com/apis/ajax/documentation/#ClientLocation

• Click HERE to purchase this book now. discuss

Finding Yourself: Geolocation • 7

http://media.pragprog.com/titles/bhh52e/code/html5_geolocation/javascripts/geolocation.js
http://media.pragprog.com/titles/bhh52e/code/html5_geolocation/javascripts/geolocation.js
http://media.pragprog.com/titles/bhh52e/code/html5_geolocation/javascripts/geolocation.js
http://code.google.com/apis/ajax/documentation/#ClientLocation
http://pragprog.com/titles/bhh52e
http://forums.pragprog.com/forums/bhh52e

We use Google’s ClientLocation() method on line 3 to get a visitor’s location and
invoke our showLocation() method to plot the location on our map.

Then we tell Modernizr to test for Geolocation. If we have support, we’ll call
our original method. If we don’t have support, we’ll use a simplified version
of Modernizr.load() to load Google’s library and then call our function to plot the
coordinates.

html5_geolocation/javascripts/geolocation.js
if(Modernizr.geolocation){

getLatitudeAndLongitude();
}else{

Modernizr.load({
load: "http://www.google.com/jsapi",
callback: function(){

getLatitudeAndLongitudeWithFallback();
}

});
}

Unfortunately, Google can’t geolocate every IP address out there, so we may
still not be able to plot the user on our map; we account for that by placing
a message underneath our image on line 7. Our fallback solution isn’t fool-
proof, but it does give us a greater chance of locating our visitor.

Without a reliable method of getting coordinates from the client, we need to
come up with a way for the user to provide us with an address, but that’s an
exercise I’ll leave up to you.

Next, let’s take a look at HTML5’s built-in support for dragging and dropping
elements.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bhh52e/code/html5_geolocation/javascripts/geolocation.js
http://pragprog.com/titles/bhh52e
http://forums.pragprog.com/forums/bhh52e

