
Extracted from:

SQL Antipatterns, Volume 1
Avoiding the Pitfalls of Database Programming

This PDF file contains pages extracted from SQL Antipatterns, Volume 1, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

SQL Antipatterns, Volume 1
Avoiding the Pitfalls of Database Programming

Bill Karwin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-898-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my wife Jan, my best supporter.

CHAPTER 11

Science is feasible when the variables are few and can be enumerated;
when their combinations are distinct and clear.

 ➤ Paul Valéry

31 Flavors
In a personal contact information table, the salutation is a good example of
a column that can have only a few values. Once you support Mr., Mrs., Ms.,
Dr., and Rev., you’ve accounted for virtually everyone. You could specify this
list in the column definition, using a data type or a constraint, so that no one
can accidentally enter an invalid string into the salutation column.

31-Flavors/intro/create-table.sql
CREATE TABLE PersonalContacts (

-- other columns
salutation VARCHAR(4)

CHECK (salutation IN ('Mr.', 'Mrs.', 'Ms.', 'Dr.', 'Rev.')),
);

That should settle it—you assume there are no other salutations to support.

Unfortunately, your boss tells you that your company is opening a subsidiary
in France. You need to support the salutations M., Mme., and Mlle. Your
mission is to alter your contact table to permit these values. This is a delicate
job and may not be possible without interrupting availability of that table.

You also thought your boss mentioned that the company is trying to open an
office next month in Brazil.

Objective: Restrict a Column to Specific Values
Restricting a column’s values to a fixed set of values is very useful. If we can
ensure that the column never contains an invalid entry, it can simplify use
of that column. For example, in the Bugs table of our example database, the
status column indicates whether a given bug is NEW, IN PROGRESS, FIXED,
and so on. The significance of each of these status values depends on how
we manage bugs in our project, but the point is that the data in the column
must be one of these values.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/31-Flavors/intro/create-table.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Ideally, we need the database to reject invalid data:

31-Flavors/obj/insert-invalid.sql
INSERT INTO Bugs (status) VALUES ('NEW'); -- OK

INSERT INTO Bugs (status) VALUES ('BANANA'); -- Error!

Antipattern: Specify Values in the Column Definition
Many people choose to specify the valid data values when they define the column.
The column definition is part of the metadata—the definition of the table
structure itself.

For example, you could define a check constraint on the column. This con-
straint disallows any insert or update that would make the constraint false.

31-Flavors/anti/create-table-check.sql
CREATE TABLE Bugs (

-- other columns
status VARCHAR(20) CHECK (status IN ('NEW', 'IN PROGRESS', 'FIXED'))

);

MySQL supports a nonstandard data type called ENUM that restricts the column
to a specific set of values.

31-Flavors/anti/create-table-enum.sql
CREATE TABLE Bugs (

-- other columns
status ENUM('NEW', 'IN PROGRESS', 'FIXED'),

);

In MySQL’s implementation, you declare the values as strings, but internally
the column is stored as the ordinal number of the string in the enumerated
list. The storage is thus compact, but when you sort a query by this column,
the default order of the result is by the ordinal value, not alphabetically by
the string value. You may not expect this behavior.

Other solutions include domains and user-defined types (UDTs). You can use
these to restrict a column to a specific set of values and conveniently apply
the same domain or data type to several columns within your database.
Unfortunately, these features are not supported in a standard way among
brands of RDBMSs yet.

Finally, you could write a trigger that contains the set of permitted values
and raises an error unless the status matches one of these values.

All of these solutions share some disadvantages. The following sections
describe some of these problems.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/31-Flavors/obj/insert-invalid.sql
http://media.pragprog.com/titles/bksap1/code/31-Flavors/anti/create-table-check.sql
http://media.pragprog.com/titles/bksap1/code/31-Flavors/anti/create-table-enum.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Baskin-Robbins “31 Flavors” Ice Cream

In 1953, this famous chain of ice cream parlors offered one flavor for each day of the
month. The chain used the slogan 31 Flavors for many years.

Today, more than sixty years later, Baskin-Robbins offers twenty-one classic flavors,
twelve seasonal flavors, sixteen regional flavors, as well as a variety of Bright Choices
and Flavors of the Month. Even though its ice cream flavors were once an immutable
set that defined its brand, Baskin-Robbins expanded its choices and made them
configurable and variable.

The same thing could happen in the project for which you’re designing a database—
in fact, you should count on it.

What Was the Middle One?
Suppose you’re developing a user interface so a user can edit bug reports. To
make it guide the user to pick one of the valid status values, you choose to fill
a drop-down menu control with these values. You need to query the database
for an enumerated list of values that are currently allowed in the status column.

Your first instinct might be to query all the values currently in use, with a
simple query like the following one:

31-Flavors/anti/distinct.sql
SELECT DISTINCT status FROM Bugs;

However, if all the bugs are new, the previous query returns only NEW. If
you use this result to populate a user interface control for the status of bugs,
you could create a chicken-and-egg situation; you can’t change a bug to
any status other than those currently in use.

To get the complete list of permitted status values, you need to query the defi-
nition of that column’s metadata. Most SQL databases support system views
for these kinds of queries, but using them can be complex. For example, if
you used MySQL’s ENUM data type, you can use the following query to query
the INFORMATION_SCHEMA system views:

31-Flavors/anti/information-schema.sql
SELECT column_type
FROM information_schema.columns
WHERE table_schema = 'bugtracker_schema'

AND table_name = 'bugs'
AND column_name = 'status';

You can’t simply get the discrete enumeration values from the INFORMA-
TION_SCHEMA in a conventional result set. Instead, you get a string containing

• Click HERE to purchase this book now. discuss

Antipattern: Specify Values in the Column Definition • 9

http://media.pragprog.com/titles/bksap1/code/31-Flavors/anti/distinct.sql
http://media.pragprog.com/titles/bksap1/code/31-Flavors/anti/information-schema.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

the definition of the check constraint or ENUM data type. For example, the
previous query in MySQL returns a column of type LONGTEXT, with the value
ENUM(’NEW’, ’IN PROGRESS’, ’FIXED’), including the parentheses, commas,
and single quotes. You must write application code to parse this string and
extract the individual quoted values before you can use them to populate a
user interface control.

The queries needed to report check constraints, domains, or UDTs are pro-
gressively more complex. Most people choose the better part of valor and
manually maintain a parallel list of values in application code. This is an easy
way for bugs to affect your project as application data becomes out of sync
with the database metadata.

Adding a New Flavor
The most common alterations are to add or remove one of the permitted values.
There’s no syntax to add or remove a value from an ENUM or check constraint;
you can only redefine the column with a new set of values. The following is
an example of adding DUPLICATE as one new status value in the MySQL ENUM:

31-Flavors/anti/add-enum-value.sql
ALTER TABLE Bugs MODIFY COLUMN status

ENUM('NEW', 'IN PROGRESS', 'FIXED', 'DUPLICATE');

You need to know that the previous definition of the column allowed NEW,
IN PROGRESS, and FIXED. This leads you back to the difficulty of querying
the current set of values as described earlier.

Some database brands can’t change the definition of a column unless the
table is empty. You might need to dump the contents of the table, redefine
the table, and then import your saved data, making the table inaccessible in
the meantime. This work is common enough that it has a name: ETL for
“extract, transform, and load.” Other brands of database support restructuring
a populated table with ALTER TABLE commands, but it can still be complex and
expensive to perform these changes.

As a matter of policy, changing metadata—that is, changing the definition of
tables and columns—should be infrequent and with attention to testing and
quality assurance. If you need to change metadata to add or remove a value
from an ENUM, then you either have to skip the appropriate testing or spend
a lot of software engineering effort on short notice to make the change. Either
way, these changes introduce risk and destabilize your project.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksap1/code/31-Flavors/anti/add-enum-value.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Old Flavors Never Die
If you make a value obsolete, you could upset historical data. For example,
you change your quality control process to replace FIXED with two stages,
CODE COMPLETE and VERIFIED:

31-Flavors/anti/remove-enum-value.sql
ALTER TABLE Bugs MODIFY COLUMN status

ENUM('NEW', 'IN PROGRESS', 'CODE COMPLETE', 'VERIFIED');

If you remove FIXED from the enumeration, you need to decide what to do with
bugs whose status was FIXED. One possible change is to update all FIXED bugs
to VERIFIED. Another option is set obsolete values to null or a default value.
Unfortunately, ALTER TABLE can’t guess which one of these changes you want.

You may have to keep an obsolete value that old rows reference. You can’t
know only from the column definition which values are obsolete, so you
exclude them from your user interface. Someone could still choose one of
those values.

Portability Is Hard
Check constraints, domains, and UDTs are not supported uniformly among
brands of SQL databases. The ENUM data type is a proprietary feature in
MySQL. Each brand of database may have a different limit on the length of
the list you can give in a column definition. Trigger languages vary as well.
These variations make it hard to choose a solution if you need to support
multiple brands of database.

How to Recognize the Antipattern
The problems with using ENUM or a check constraint arise when the set of
values is not fixed. If you’re considering using ENUM, first ask yourself whether
the set of values are expected to change or even whether they might change.
If so, it’s probably not a good time to employ an ENUM.

• “We have to take the database offline so we can add a new choice in one
of our application’s menus. It should take no more than thirty minutes,
if all goes well.”

This is a sign that a set of values is baked into the definition of a column.
You should never need to interrupt service for a change like this.

• “The status column can have one of the following values. We shouldn’t need
to revise this list.”

• Click HERE to purchase this book now. discuss

How to Recognize the Antipattern • 11

http://media.pragprog.com/titles/bksap1/code/31-Flavors/anti/remove-enum-value.sql
http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

Shouldn’t need to are weasel words, and this says something quite different
from can’t.

• “The list of values in the application code got out of sync with the business
rules in the database—again.”

This is a risk of maintaining information in two different places.

Legitimate Uses of the Antipattern
As we discussed, ENUM may cause fewer problems if the set of values is
unchanging. It’s still difficult to query the metadata for the set of values, but
you can maintain a matching list of values in application code without getting
out of sync.

ENUM is most likely to succeed when it would make no sense to alter the set
of permitted values, such as when a column represents an either/or choice
with two mutually exclusive values: LEFT/RIGHT, ACTIVE/IN-ACTIVE,
ON/OFF, INTERNAL/EXTERNAL, and so on.

Check constraints can be used in many ways other than simply to implement
an ENUM-like mechanism, such as checking that a time interval’s start is less
than its end.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksap1
http://forums.pragprog.com/forums/bksap1

