
Extracted from:

SQL Antipatterns
Avoiding the Pitfalls of Database Programming

This PDF file contains pages extracted from SQL Antipatterns, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

SQL Antipatterns
Avoiding the Pitfalls of Database Programming

Bill Karwin

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2010 Bill Karwin.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-55-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—March 2012

http://pragprog.com

CHAPTER 1

Introduction
I turned down my first SQL job.

Shortly after I finished my college degree in computer and information science
at the University of California, I was approached by a manager who worked
at the university and knew me through campus activities. He had his own
software startup company on the side that was developing a database man-
agement system portable between various UNIX platforms using shell scripts
and related tools such as awk (at this time, modern dynamic languages like
Ruby, Python, PHP, and even Perl weren’t popular yet). The manager ap-
proached me because he needed a programmer to write the code to recognize
and execute a limited version of the SQL language.

He said, “I don’t need to support the full language—that would be too much
work. I need only one SQL statement: SELECT.”

I hadn’t been taught SQL in school. Databases weren’t as ubiquitous as they
are today, and open source brands like MySQL and PostgreSQL didn’t exist
yet. But I had developed complete applications in shell, and I knew something
about parsers, having done projects in classes like compiler design and
computational linguistics. So, I thought about taking the job. How hard could
it be to parse a single statement of a specialized language like SQL?

I found a reference for SQL and noticed immediately that this was a different
sort of language from those that support statements like if() and while(), variable
assignments and expressions, and perhaps functions. To call SELECT only one
statement in that language is like calling an engine only one part of an
automobile. Both sentences are literally true, but they certainly belie the
complexity and depth of their subjects. To support execution of that single
SQL statement, I realized I would have to develop all the code for a fully
functional relational database management system and query engine.

An expert is a person who has made all the
mistakes that can be made in a very narrow
field.

 ➤ Niels Bohr

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

I declined this opportunity to code an SQL parser and RDBMS engine in shell
script. The manager underrepresented the scope of his project, perhaps
because he didn’t understand what an RDBMS does.

My early experience with SQL seems to be a common one for software devel-
opers, even those who have a college degree in computer science. Most people
are self-taught in SQL, learning it out of self-defense when they find themselves
working on a project that requires it, instead of studying it explicitly as they
would most programming languages. Regardless of whether the person is a
hobbyist or a professional programmer or an accomplished researcher with
a PhD, SQL seems to be a software skill that programmers learn without
training.

Once I learned something about SQL, I was surprised how different it is from
procedural programming languages such as C, Pascal, and shell, or object-
oriented languages like C++, Java, Ruby, or Python. SQL is a declarative
programming language like LISP, Haskell, or XSLT. SQL uses sets as a
fundamental data structure, while object-oriented languages use objects.
Traditionally trained software developers are turned off by this so-called
impedance mismatch, so many programmers are drawn to object-oriented
libraries to avoid learning how to use SQL effectively.

Since 1992, I’ve worked with SQL a lot. I’ve used it when developing applica-
tions, I’ve developed libraries for SQL programming in Perl and PHP, and I’ve
provided technical support and developed training and documentation for
the InterBase RDBMS product. I’ve answered thousands of questions on
Internet mailing lists and newsgroups. I see a lot of repeat business—frequent-
ly asked questions that show that software developers make the same mistakes
over and over again.

1.1 Who This Book Is For

I’m writing SQL Antipatterns for software developers who need to use SQL so
I can help you use the language more effectively. It doesn’t matter whether
you’re a beginner or a seasoned professional. I’ve talked to people of all levels
of experience who would benefit from the subjects in this book.

You may have read a reference on SQL syntax. Now you know all the clauses
of a SELECT statement, and you can get some work done. Gradually, you may
increase your SQL skills by inspecting other applications and reading articles.
But how can you tell good examples from bad examples? How can you be
sure you’re learning best practices, instead of yet another way to paint yourself
into a corner?

2 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

You may find some topics in SQL Antipatterns that are well-known to you.
You’ll see new ways of looking at the problems, even if you’re already aware
of the solutions. It’s good to confirm and reinforce your good practices by
reviewing widespread programmer misconceptions. Other topics may be new
to you. I hope you can improve your SQL programming habits by reading
them.

If you are a trained database administrator, you may already know the best
ways to avoid the SQL pitfalls described in this book. This book can help you
by introducing you to the perspective of software developers. It’s not uncom-
mon for the relationship between developers and DBAs to be contentious,
but mutual respect and teamwork can help us to work together more effec-
tively. Use SQL Antipatterns to help explain good practices to the software
developers you work with and the consequences of straying from that path.

1.2 What’s in This Book

What is an antipattern? An antipattern is a technique that is intended to solve
a problem but that often leads to other problems. An antipattern is practiced
widely in different ways, but with a thread of commonality. People may come
up with an idea that fits an antipattern independently or with help from a
colleague, a book, or an article. Many antipatterns of object-oriented software
design and project management are documented at the Portland Pattern
Repository,1 as well as in the 1998 book AntiPatterns [BMMM98] by William
J. Brown et al.

SQL Antipatterns describes the most frequently made missteps I’ve seen people
naively make while using SQL as I’ve talked to them in technical support and
training sessions, worked alongside them developing software, and answered
their questions on Internet forums. Many of these blunders I’ve made myself;
there’s no better teacher than spending many hours late at night making up
for one’s own errors.

Parts of This Book

This book has four parts for the following categories of antipatterns:

Logical Database Design Antipatterns
Before you start coding, you should decide what information you need to
keep in your database and the best way to organize and interconnect your
data. This includes planning database tables, columns, and relationships.

1. Portland Pattern Repository: http://c2.com/cgi-bin/wiki?AntiPattern

• Click HERE to purchase this book now. discuss

What’s in This Book • 3

http://c2.com/cgi-bin/wiki?AntiPattern
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Physical Database Design Antipatterns
After you know what data you need to store, you implement the data
management as efficiently as you can using the features of your RDBMS
technology. This includes defining tables and indexes and choosing data
types. You use SQL’s data definition language—statements such as
CREATE TABLE.

Query Antipatterns
You need to add data to your database and then retrieve data. SQL queries
are made with data manipulation language—statements such as SELECT,
UPDATE, and DELETE.

Application Development Antipatterns
SQL is supposed to be used in the context of applications written in
another language, such as C++, Java, PHP, Python, or Ruby. There are
right ways and wrong ways to employ SQL in an application, and this
part of the book describes some common blunders.

Many of the antipattern chapters have humorous or evocative titles, such as
Golden Hammer, Reinventing the Wheel, or Design by Committee. It’s traditional
to give both positive design patterns and antipatterns names that serve as a
metaphor or mnemonic.

The appendix provides practical descriptions of some relational database
theory. Many of the antipatterns this book covers are the result of misunder-
standing database theory.

Anatomy of an Antipattern

Each antipattern chapter contains the following subheadings:

Objective
This is the task that you may be trying to solve. Antipatterns are used
with an intention to provide that solution but end up causing more
problems than they solve.

The Antipattern
This section describes the nature of the common solution and illustrates
the unforeseen consequences that make it an anti-pattern.

How to Recognize the Antipattern
There may be certain clues that help you identify when an antipattern is
being used in your project. Certain types of barriers you encounter, or
quotes you may hear yourself or others saying, can tip you off to the
presence of an antipattern.

4 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Legitimate Uses of the Antipattern
Rules usually have exceptions. There may be circumstances in which an
approach normally considered an antipattern is nevertheless appropriate,
or at least the lesser of all evils.

Solution
This section describes the preferred solutions, which solve the original
objective without running into the problems caused by the antipattern.

1.3 What’s Not in This Book

I’m not going to give lessons on SQL syntax or terminology. There are plenty
of books and Internet references for the basics. I assume you have already
learned enough SQL syntax to use the language and get some work done.

Performance, scalability, and optimization are important for many people who
develop database-driven applications, especially on the Web. There are books
specifically about performance issues related to database programming. I
recommend SQL Performance Tuning [GP03] and High Performance MySQL,
Second Edition [SZTZ08]. Some of the topics in SQL Antipatterns are relevant
to performance, but it’s not the main focus of the book.

I try to present issues that apply to all database brands and also solutions
that should work with all brands. The SQL language is specified as an ANSI
and ISO standard. All brands of databases support these standards, so I
describe vendor-neutral use of SQL whenever possible, and I try to be clear
when describing vendor extensions to SQL.

Data access frameworks and object-relational mapping libraries are helpful
tools, but these aren’t the focus of this book. I’ve written most code examples
in PHP, in the plainest way I can. The examples are simple enough that they’re
equally relevant to most programming languages.

Database administration and operation tasks such as server sizing, installation
and configuration, monitoring, backups, log analysis, and security are
important and deserve a book of their own, but I’m targeting this book to
developers using the SQL language more than database administrators.

This book is about SQL and relational databases, not alternative technology
such as object-oriented databases, key/value stores, column-oriented
databases, document-oriented databases, hierarchical databases, network
databases, map/reduce frameworks, or semantic data stores. Comparing the

• Click HERE to purchase this book now. discuss

What’s Not in This Book • 5

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

strengths and weaknesses and appropriate uses of these alternative solutions
for data management would be interesting but is a matter for other books.

1.4 Conventions

The following sections describe some conventions I use in this book.

Typography

SQL keywords are formatted in all-capitals and in a monospaced font to make
them stand out from the text, as in SELECT.

SQL tables, also in a monospaced font, are spelled with a capital for the initial
letter of each word in the table name, as in Accounts or BugsProducts. SQL
columns, also in a monospaced font, are spelled in lowercase, and words are
separated by underscores, as in account_name.

Literal strings are formatted in italics, as in bill@example.com.

Terminology

SQL is correctly pronounced “ess-cue-ell,” not “see-quell.” Though I have no
objection to the latter being used colloquially, I try to use the former, so in
this book you will read phrases like “an SQL query,” not “a SQL query.”

In the context of database-related usage, the word index refers to an ordered
collection of information. The preferred plural of this word is indexes. In other
contexts, an index may mean an indicator and is typically pluralized as indices.
Both are correct according to most dictionaries, and this causes some confu-
sion among writers. In this book, I spell the plural as indexes.

In SQL, the terms query and statement are somewhat interchangeable, being
any complete SQL command that you can execute. For the sake of clarity, I
use query to refer to SELECT statements and statement for all others, including
INSERT, UPDATE, and DELETE statements, as well as data definition statements.

Entity-Relationship Diagrams

The most common way to diagram relational databases is with entity-relation-
ship diagrams. Tables are shown as boxes, and relationships are shown as
lines connecting the boxes, with symbols at either end of the lines describing
the cardinality of the relationship. For examples, see Figure 1, Examples of
entity-relationship diagrams, on page 7.

6 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Accounts

CommentsBugs

Many-to-One
Each account may log many bugs

One-to-Many
Each bug may have many comments

InstallersProducts

One-to-One
Each product has one installer

ProductsBugs

Many-to-Many
Each product may have many bugs;
a bug may pertain to many products

ProductsBugs

Many-to-Many
Same as above, with intersection table

BugsProducts

Bugs

Figure 1—Examples of entity-relationship diagrams

• Click HERE to purchase this book now. discuss

Example Database • 7

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

1.5 Example Database

I illustrate most of the topics in SQL Antipatterns using a database for a
hypothetical bug-tracking application. The entity-relationship diagram for
this database is shown in Figure 2, Diagram for example bug database, on
page 10. Notice the three connections between the Bugs table and the Accounts
table, representing three separate foreign keys.

The following data definition language shows how I define the tables. In some
cases, choices are made for the sake of examples later in the book, so they
might not always be the choices one would make in a real-world application.
I try to use only standard SQL so the example is applicable to any brand of
database, but some MySQL data types also appear, such as SERIAL and BIGINT.

Introduction/setup.sql
CREATE TABLE Accounts (
account_id SERIAL PRIMARY KEY,
account_name VARCHAR(20),
first_name VARCHAR(20),
last_name VARCHAR(20),
email VARCHAR(100),
password_hash CHAR(64),
portrait_image BLOB,
hourly_rate NUMERIC(9,2)

);

CREATE TABLE BugStatus (
status VARCHAR(20) PRIMARY KEY

);

CREATE TABLE Bugs (
bug_id SERIAL PRIMARY KEY,
date_reported DATE NOT NULL,
summary VARCHAR(80),
description VARCHAR(1000),
resolution VARCHAR(1000),
reported_by BIGINT UNSIGNED NOT NULL,
assigned_to BIGINT UNSIGNED,
verified_by BIGINT UNSIGNED,
status VARCHAR(20) NOT NULL DEFAULT 'NEW',
priority VARCHAR(20),
hours NUMERIC(9,2),
FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),
FOREIGN KEY (verified_by) REFERENCES Accounts(account_id),
FOREIGN KEY (status) REFERENCES BugStatus(status)

);

8 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bksqla/code/Introduction/setup.sql
http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

CREATE TABLE Comments (
comment_id SERIAL PRIMARY KEY,
bug_id BIGINT UNSIGNED NOT NULL,
author BIGINT UNSIGNED NOT NULL,
comment_date DATETIME NOT NULL,
comment TEXT NOT NULL,
FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

CREATE TABLE Screenshots (
bug_id BIGINT UNSIGNED NOT NULL,
image_id BIGINT UNSIGNED NOT NULL,
screenshot_image BLOB,
caption VARCHAR(100),
PRIMARY KEY (bug_id, image_id),
FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

CREATE TABLE Tags (
bug_id BIGINT UNSIGNED NOT NULL,
tag VARCHAR(20) NOT NULL,
PRIMARY KEY (bug_id, tag),
FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

CREATE TABLE Products (
product_id SERIAL PRIMARY KEY,
product_name VARCHAR(50)

);

CREATE TABLE BugsProducts(
bug_id BIGINT UNSIGNED NOT NULL,
product_id BIGINT UNSIGNED NOT NULL,
PRIMARY KEY (bug_id, product_id),
FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

In some chapters, especially those in Logical Database Design Antipatterns,
I show different database definitions, either to exhibit the antipattern or to
show an alternative solution that avoids the antipattern.

1.6 Acknowledgments

First and foremost, I owe my gratitude to my wife Jan. I could not have written
this book without the inspiration, love, and support you give me, not to
mention the occasional kick in the pants.

• Click HERE to purchase this book now. discuss

Acknowledgments • 9

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

Figure 2—Diagram for example bug database

I also want to express thanks to my reviewers for giving me a lot of their time.
Their suggestions improved the book greatly. Marcus Adams, Jeff Bean,
Frederic Daoud, Darby Felton, Arjen Lentz, Andy Lester, Chris Levesque, Mike
Naberezny, Liz Nealy, Daev Roehr, Marco Romanini, Maik Schmidt, Gale
Straney, and Danny Thorpe.

Thanks to my editor Jacquelyn Carter and the publishers of Pragmatic
Bookshelf, who believed in the mission of this book.

10 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bksqla
http://forums.pragprog.com/forums/bksqla

