
Extracted from:

The VimL Primer
Edit Like a Pro with Vim Plugins and Scripts

This PDF file contains pages extracted from The VimL Primer, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com




The VimL Primer
Edit Like a Pro with Vim Plugins and Scripts

Benjamin Klein

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Lynn Beighley and Fahmida Y. Rashid (editor)
Candace Cunningham (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-040-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2015

https://pragprog.com
rights@pragprog.com


VimL, as you learned in the introduction, is based on Ex commands. To take
full advantage of its capabilities, though, we need to move beyond those
commands to functions—both the built-in ones that Vim provides and our
own—types, logic, and the other additions that bring VimL from the Ex com-
mand set to the language level.

In this chapter we briefly go over VimL’s syntax. You’ll see how to write and
call functions, define variables, iterate over collections of items, and more.
We’ll finish by looking at the directory structure of a typical Vim plugin and
getting ready to create our own plugin.

Functions, Types, and Variables
Vim includes many built-in functions that we can call in our own code—
everything from sort() and search() to browse() and winheight(). We can also write
our own functions, using function and endfunction. Our functions have to begin
with uppercase letters to distinguish them from built-in functions. Here’s an
example that uses the command :echo to output a message to the user:

intro/function.vim
function! EchoQuote()

echo 'A poet can but ill spare time for prose.'
endfunction

To call this function, we need to save this code in a file, so let’s do that first.
Then we need to tell Vim to load, or source, that file. We do this by calling
the :source command on the Vim command line, like this:

:source %

We pass % in the command as an argument. % is a shortcut character that
stands for the name of the file we’re currently editing, so that :source % essen-
tially means to source the current file.

When we call the command, Vim prints the function’s output as a message:

" → A poet can but ill spare time for prose.

(We show output using the Vim comment syntax, followed by an arrow.)

Let’s look at our function file again. Did you catch the ! (bang) at the end of
the function’s first line?

function! EchoQuote()

When Vim loads this file, it will define a function called EchoQuote(). If there’s
already a function with that name—for example, if there’s one from when we
last loaded this file—we would have a name collision. So adding the bang to

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/bkviml/code/intro/function.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml


the end of function tells Vim that if this happens, it should overwrite the existing
EchoQuote() function with this one.

The ! modifier is common with Ex commands—for example, :q! quits Vim
without asking us about unsaved changes. Similarly, the command :function!
silently overwrites existing functions, so it’s good to be careful about adding
the bang if there’s any chance that our function could conflict with an existing
one declared elsewhere.

Notice also that, in our function above, there’s no colon (:) at the beginning
of the :echo command. Normally we would use the colon to start a command
in a Vim session, but in a VimL script colons are optional.

We declare variables with let:

function! EchoQuote()
let quote = 'A poet can but ill spare time for prose.'
echo quote

endfunction

And we can take arguments. If our function requires an argument, we include
the argument’s name between the parentheses when we declare the function;
these are called named arguments. To refer to a named argument in our
function, we append the a: argument prefix:

function! EchoQuote(quote)
echo a:quote

endfunction
call EchoQuote('A poet can but ill spare time for prose.')

" → A poet can but ill spare time for prose.

We can also take optional arguments—arguments that can be given to our
function but aren’t required. To allow optional arguments, we add ellipses
(...) after the named arguments in the function declaration. Within our function,
Vim numbers optional arguments beginning with 1 and automatically stores
them in a List variable called a:000.

So to access our optional arguments, we can either refer to them by their
number or refer to their entry in the List. In this version of EchoQuote(), we take
both approaches:

function! EchoQuote(quote, ...)
let year = a:1
let author = a:000[1]
echo 'In ' . year . ', ' . author . ' said: "' . a:quote . '"'

endfunction

• 2

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml


call EchoQuote('A poet can but ill spare time for prose.',
\ '1784', 'William Cowper')

" → In 1784, William Cowper said: "A poet can but ill spare time for prose."

Here, we define two variables, year and author, using the first two optional
arguments. Unlike the numbering system Vim uses for optional arguments,
a VimL List (like a:000) is zero-indexed, meaning it starts counting from 0. So
a:1 is the first optional argument, but a:000[1] is the second argument.

In the last line, we use the :call command to call our function. At the end of
the function, the line that we echo is a concatenated String variable; as you can
see, we use the dot (.) to concatenate String values.

One final thing about this function: you might have noticed that the last line
of code, where we call EchoQuote(), is actually broken into two lines. We can split
a line up like this using \, VimL’s line-continuation operator. When we want
to break up lines, we just have to start each new line with this operator. Note
that it starts each new line—it doesn’t end the first line. This can be helpful
when we have long lines that might scroll way off of the screen, or even just
to help us format function arguments neatly. (For more on this operator, see
:help line-continuation.)

Variable Scopes
Variable names can contain letters, underscores, and digits—although they
can’t start with digits. There are also several variable scopes, which we refer
to using prefixes. What we saw in our last function, where our variables were
written a:quote, was the argument scope, used for function arguments. Two
others are the global scope, which is the default scope, and the function scope.

intro/variable.vim
let g:quote = 'A poet can but ill spare time for prose.'

function! EchoQuote()
let l:quote = 'Local: A poet can but ill spare time for prose.'
return l:quote

endfunction

In these examples, g:quote is a global variable, and l:quote is a function-specific
variable. The scope is marked by the prefix, just like variables in the argument
scope use the a: prefix.

The function scope doesn’t relate to arguments, though—its purpose is to
distinguish variables in our function from other variables with similar names.
Similarly, we use the g: prefix, for global scope, to distinguish a variable outside

• Click  HERE  to purchase this book now.  discuss

Functions, Types, and Variables • 3

http://media.pragprog.com/titles/bkviml/code/intro/variable.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml


of our function from one defined inside of it. If our function had a quote of its
own but we wanted to refer to a quote variable outside of the function—the
global variable—we’d write g:quote. If we wanted to define a variable with a
name that’s reserved or already taken, we could name it using the function-
specific prefix, such as l:quote. Except in these kinds of cases, the prefixes are
optional; we can give all of our variables the correct prefixes, or we can leave
them off unless they’re needed.

As with scopes, VimL has a number of variable types—six, to be exact. We’ve
already seen examples of List and String, but there are also Number, Funcref—a
variable referring to a function—Dictionary, and Float. Let’s quickly go over each.

Number
Number variables can be decimal, octal, or hexadecimal. They’re easy to tell
apart: octal numbers start with 0, hexadecimal numbers start with either 0x
or 0X, and any other number is decimal. Another way to tell them apart is to
use the :echo command, which prints only decimal values:

:echo 10 " → 10
:echo 023 " → 19
:echo 0x10 " → 16

Of course, since a 0 at the beginning is what distinguishes an octal Number,
we can’t start decimal numbers with 0.

Negative numbers start with a - character. That’s also the subtraction operator,
and the other usual arithmetic operators also work as we might expect:

:echo 20 - 10 " → 10
:echo 10 + -012 " → 0
:echo 0x32 / 0xa " → 5
:echo 59 * 19 " → 1121

String
As with Number, there are a couple of different kinds of String variables.

"I sing the Sofa. I who lately sang\nTruth, Hope, and Charity..."
'I sing the Sofa. I who lately sang\nTruth, Hope, and Charity...'

Those two are exactly the same String. What happens when we echo them?

intro/string.vim
:echo "I sing the Sofa. I who lately sang\nTruth, Hope, and Charity..."
" → I sing the Sofa. I who lately sang

Truth, Hope, and Charity...

:echo 'I sing the Sofa. I who lately sang\nTruth, Hope, and Charity...'

• 4

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/bkviml/code/intro/string.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml


" → I sing the Sofa. I who lately sang\nTruth, Hope, and Charity...

The only difference between these two strings is the quotes. In VimL, double-
quoted strings can use a variety of special characters (see :help expr-quote). Our
string above contains an \n, the special character for a new line. In single-
quoted strings, we can escape a single quote by putting two together, but
other than that the characters themselves are preserved, as you can see.

A funny thing about the double-quoted String is what happens when we leave
off the ending quotes:

:echo "I sing the Sofa. I who lately sang"
" Truth, Hope, and Charity, and touch'd with awe
:echo "The solemn chords..."

The double quote is also what starts out a VimL comment. Comments can
be either on their own lines or following commands on a line:

:ls " The command to list all buffers.

The catch is that we can’t do this with commands that expect a double quote
as part of an argument.

Funcref
A Funcref is a variable that refers to a function. It’s like a variable placeholder
for the function—we use it in place of the function itself, and, like function
names, Funcref names have to begin with an uppercase letter.

To assign a Funcref variable, we use function():

intro/funcref.vim
let Example = function('EchoQuote')
call Example()

A poet can but ill spare time for prose.

And look at what we do with our Funcref: because it refers to a function, we
can use it in place of a function name. In the example, we use it with the :call
command, which can take either a function name or a Funcref variable.

The call() function works like the :call command, and we can substitute a Funcref
for a function name there, too. This function can also take arguments for us,
in case our function (or the function that our Funcref refers to) requires them.
We simply include the arguments as a List:

function! EchoQuote(quote, ...)
let year = a:1
let author = a:000[1]
return 'In ' . year . ', ' . author . ' said: "' . a:quote . '"'

• Click  HERE  to purchase this book now.  discuss

Functions, Types, and Variables • 5

http://media.pragprog.com/titles/bkviml/code/intro/funcref.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml


endfunction

let Example = function('EchoQuote')
let q = 'This crocodile mouth is the perfect helmet all the family will enjoy.'

echo call(Example, [quote, '2014', 'Dr. Carl Grommy'])

To get the name of the function that a Funcref references, we use string(). The
String representation of a Funcref looks like what we write to assign one:

echo string(Example)

function('EchoQuote')

List
The List is a set of comma-separated items within square brackets. Items can
be of any type, and built-in functions let us get, set, or remove items anywhere
along the List:

intro/list.vim
let animalKingdom = ['Crocodile', 'Lizard', 'Bug', 'Squid']
echo animalKingdom
" → ['Crocodile', 'Lizard', 'Bug', 'Squid']

call add(animalKingdom, 'Penguin')
echo animalKingdom
" → ['Crocodile', 'Lizard', 'Bug', 'Squid', 'Penguin']

call remove(animalKingdom, 3)
call insert(animalKingdom, 'Octopus', 3)
echo animalKingdom[3]
" → Octopus

echo animalKingdom
" → ['Crocodile', 'Lizard', 'Bug', 'Octopus', 'Penguin']

All of these commands modify the original List—for example, when we call sort()
before echoing a List, watch what happens:

let animalKingdom = ['Crocodile', 'Lizard', 'Bug', 'Octopus', 'Penguin']
echo animalKingdom
" → ['Crocodile', 'Lizard', 'Bug', 'Octopus', 'Penguin']

echo sort(animalKingdom)
" → ['Bug', 'Crocodile', 'Lizard', 'Octopus', 'Penguin']

echo animalKingdom
" → ['Bug', 'Crocodile', 'Lizard', 'Octopus', 'Penguin']

• 6

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/bkviml/code/intro/list.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml


If we want to instead modify a copy of the List, we have a couple of options.
copy() makes a distinct copy of the List, but with the original items—that is, if
we were to add or remove from the copy, the original would be unchanged,
but if we were to modify the items in the copy, that would affect the items in
the original. The other option is deepcopy(), which makes a full copy of the List,
including distinct items.

echo sort(copy(animalKingdom))
" → ['Bug', 'Crocodile', 'Lizard', 'Octopus', 'Penguin']

echo animalKingdom
" → ['Crocodile', 'Lizard', 'Bug', 'Octopus', 'Penguin']

We can get a sublist, or a slice of the List, by using [:] to specify the first and
last items we want. To get the first three items of a List, for example, we could
do this:

intro/list.vim
let animalKingdom = ['Frog', 'Rat', 'Crocodile', 'Lizard', 'Bug', 'Octopus',

\ 'Penguin']
let forest = animalKingdom[0:2]

echo forest
" → ['Frog', 'Rat', 'Crocodile']

If we don’t specify a starting item, the default is 0. So we could also have
written this like so:

let forest = animalKingdom[:2]

And if we want to end our sublist on the last item, we can count from the end
of the List with a negative number (in this case, -1).

let animalKingdom = ['Frog', 'Rat', 'Crocodile', 'Lizard', 'Bug', 'Octopus',
\ 'Penguin']

echo animalKingdom[2:-1]
" → ['Crocodile', 'Lizard', 'Bug', 'Octopus', 'Penguin']

Dictionary
A Dictionary is an unordered array of keys and values. To access an entry, we
put its key within brackets:

intro/dictionary.vim
let scientists = {'Retxab': 'Alfred Clark', 'Nielk': 'Bill von Cook'}

echo scientists['Retxab'] " → Alfred Clark

Keys must be of type String (or Number, but Number keys are automatically con-
verted to String). Values, on the other hand, can be of any type—even Dictionary.

• Click  HERE  to purchase this book now.  discuss

Functions, Types, and Variables • 7

http://media.pragprog.com/titles/bkviml/code/intro/list.vim
http://media.pragprog.com/titles/bkviml/code/intro/dictionary.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml


let scientists = {'Retxab': {'Clark': 'Alfred', 'Stoner': 'Fred', 'Noggin': 'Brad'},
\ 'Nielk': {'Whate': 'Robert', 'von Cook': 'Bill'}}

echo scientists['Retxab']['Stoner'] " → Fred

To add entries, we use let:

let scientists['Trhok'] = 'Squirt'
echo scientists.Trhok " → Squirt

And as you can see, we can also use a dot notation to access an entry, as
long as its key consists only of letters, numbers, and underscores (this won’t
work for an entry with a key containing whitespace).

Float
Float variables are floating-point numbers:

intro/float.vim
let flotation = 96.7

The built-in function str2float(), as its name suggests, converts a String value to
a Float. Another function, float2nr(), converts a Float to a Number. And speaking
of Float and Number, if we add variables of those two types together, the result
is converted to a Float:

let no = 42 + 96.7
echo no " → 138.7
echo type(no) " → 5

Look at what we echo on the last line: type(no). The function type() takes a value
or variable and returns a number from 0 to 5 depending on the value’s type:
0 for a Number, 1 for a String, 2 for a Funcref, 3 for a List, 4 for a Dictionary, and 5 for
a Float. To keep us from having to memorize these numbers and then compare
a variable to them, the official recommendation from Vim’s documentation is
to compare our variable to a value of a known type. (See :help type().)

echo type(no) == type(1.5) " → 1

The no variable is a Float, so this code returns 1 for true. 0 would be false:

let no = 12.5
echo type(no) == type("warysammy") " → 0

• 8

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/bkviml/code/intro/float.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml



