
Extracted from:

The VimL Primer
Edit Like a Pro with Vim Plugins and Scripts

This PDF file contains pages extracted from The VimL Primer, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

The VimL Primer
Edit Like a Pro with Vim Plugins and Scripts

Benjamin Klein

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Lynn Beighley and Fahmida Y. Rashid (editor)
Candace Cunningham (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-040-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2015

https://pragprog.com
rights@pragprog.com

Syntax highlighting is part of Vim’s filetype support for the wide variety of
languages that it supports by default. It relies on syntax files, VimL script
files that define the elements of languages and place them in standard cate-
gories so that Vim knows how to format and highlight code in those languages.
When we come up with our own filetype, it’s up to us to tell Vim how to
highlight that filetype’s syntax.

Our plugin project is getting close to where we’ll put on the finishing touches.
In this chapter we’ll clean up the playlist track listing and create our own
special syntax. Then we’ll prettify it with syntax highlighting. We’ll use the
filetype we worked on in the previous chapter and see another facet of how
a Vim filetype plugin works.

The Vim Syntax File
We know from The Structure of a Vim Plugin, on page ?, that syntax files are
kept in the syntax directory. Create a syntax directory under the main plugin
directory if you haven’t done that yet. Then within it, create the file mpdv.vim.

Distinguishing Syntax Elements
We specify syntax elements by using the :syntax command. The command can
define several different element types, but the ones we’re most commonly
going to use are keyword, match, and region.

Used to specify a keyword element or a list of keyword elements.keyword
Used to specify a class of elements defined by a provided regular-
expression pattern.

match

Used to specify an element defined by starting and ending regular-
expression patterns.

region

Here are examples of all three:

syntax keyword langType String Number Dictionary List
syntax match langComment /".*/
syntax region langString start=/'/ skip=/''/ end=/'/

The first arguments in these commands—langType, langComment, and langString—
are the names of syntax groups. By convention, we start group names with
the filetype for the language that the syntax file is for, so here lang would be
a filetype. (This is also what :set filetype? would return.) The langType group would
describe types in the language of the lang filetype.

After the group names come the elements. A keyword is a simple string, such
as if or for. An element defined in a match uses a regular-expression pattern,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

which we delimit with / characters, and an element defined by a region includes
everything between the characters that we specify as the start and the end.

In our region example, we’re using another pattern, the optional skip, to define
false-alarm patterns on which we don’t want to end a match. The langString
group defines a String as two single quote marks and everything between them.
The skip pattern matches a pair of single quotes, so if we come across two
consecutive single quotes, the string will go on until it finds another lone
single quote, which will be the end. (If you recall from when we discussed the
String type in Functions, Types, and Variables, on page ?, this is how single
quotes are escaped in single-quoted VimL strings.)

Remember that most of VimL’s vocabulary consists of Ex commands, like we
run in the Vim command line. :syntax is no exception, which means that we
can try out these examples by opening an empty Vim buffer, entering a line
of our syntax, and then executing a :syntax command, like this:

This is a String: 'Hello!'

:syntax region langString start=/'/ skip=/''/ end=/'/

So enter that first line in a new empty buffer, execute the second line in Vim’s
command line, and…nothing happens. Why is that?

Linking Syntax Groups to Highlight Groups
What we just did in our langString example was define a syntax group—we told
Vim how to distinguish a langString element from the surrounding code. What
we did not do was tell Vim how to highlight the langString element. To do that,
we must use the other key syntax-related command, :highlight.

With :highlight, we set the color and other formatting options that Vim uses to
highlight syntax elements. The command takes an element and a set of
arguments specific to different terminal and GUI Vim configuration, since the
various terminal and GUI versions of Vim have varying levels of support for
the formatting options.

Used to specify the format used in normal terminals, especially those
lacking color capabilities. Example: term=bold.

term

Used to specify the format or colors used in color-capable terminals;
also relevant are ctermfg, or the color to use for text in a color terminal,

cterm

as well as ctermbg, the background color to use in a color terminal.
Example: cterm=bold ctermfg=blue ctermbg=white.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

Used to specify the format or colors used in GUI versions of Vim;
also relevant are guifg, or the color to use for text in a GUI Vim win-

gui

dow, and guibg, or the color to use for the background in a GUI Vim.
Example: gui=underline guifg=darkBlue guibg=green.

The values we give to term, cterm, and gui are part of a set that includes, among
others, italic, underline, and bold. The color value for ctermfg, ctermbg, guifg, and
guibg can be a Vim color name, such as Blue or Green or a color number or RGB
hexadecimal value. (There are complete lists of the color numbers that we
can use; see :help cterm-colors and :help gui-colors.)

Another way to use :highlight is to have it define groups. These aren’t syntax
groups like we define with :syntax, but highlight groups. Highlight groups are
classes of syntax to which we can apply colors and formatting options, using
color schemes. Vim uses several highlight groups for things like the statusline,
the last search match, and the divider between split windows. Similarly, there
are commonly used groups that are used by convention for language con-
structs, such as comments, types, and operators. (See :help group-name.)

There are a couple of ways in which we can use :highlight to highlight syntax
groups. One way is to set the color values for the syntax group directly:

highlight langString ctermfg=Blue guifg=#0000FF

Try running this in the command line on that new empty buffer—you should
see the string that we entered turn blue. Yay!

The only problem with doing this for a language’s syntax file is that it breaks
the user’s color scheme. Color scheme files are written to be portable: they
set colors and other options for terminal and GUI Vim versions. Let’s say that
our user has searched Vim’s website for color schemes and has installed a
color scheme that contains this line:1

highlight String ctermfg=113 cterm=none guifg=#95e454 gui=italic

Most Vim color schemes will contain an equivalent to this line; it specifies
colors for the String highlight group. In the case of a GUI Vim, it specifies italic
type. Our :syntax command for langString, however, formats the langString group
directly. Since langString is part of the lang syntax file, other color schemes won’t
format it—they format instead the general-purpose highlight group String. So
to take advantage of other color scheme files, we have to link our syntax
groups to the conventional highlight groups for which the color schemes are
written.

1. http://www.vim.org/scripts/script_search_results.php?script_type=color+scheme

• Click HERE to purchase this book now. discuss

The Vim Syntax File • 7

http://www.vim.org/scripts/script_search_results.php?script_type=color+scheme
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

This linking approach, then, is the other way to use :highlight to highlight
syntax groups. Here’s an example of how to do it, using a slightly modified
line from the Groovy syntax file that ships with Vim:

highlight link groovyComment Comment

groovyComment is a syntax group that’s defined in the groovy.vim syntax file. This
line links it with Vim’s Comment highlight group, so that now any color scheme
can provide appropriate highlighting for comments in a Groovy file.

Formatting the Playlist
Our first step in making formatting improvements to our playlist will be to
neatly align the items of each track. Currently, we simply display each track’s
items, separated by a / character, and we aren’t paying any attention to each
item’s length.

Our pre-first step will be to move the playlist-fetching code to a separate
function. In this new function we’ll call mpc to get the playlist, divide up each
track’s items, format them all to display nicely, and then return the result to
mpc#DisplayPlaylist().

We’ll put this at the top of our autoload/mpc.vim file. Here’s how it should start:

vsyntax/mpc/autoload/mpc.vim
function! mpc#GetPlaylist()

let command = "mpc --format '%position% @%artist% @%album% @%title%' playlist"
let [results, playlist] = [split(system(command), '\n'), []]
let maxLengths = {'position': [], 'artist': [], 'album': []}

We begin by calling mpc, as we’d expect, but this time we’re using a different
format for the output:

mpc --format '%position% @%artist% @%album% @%title%' playlist

Each item making up a track in the playlist is separated by the string @.
We’ll need this later on; track titles and album names can contain spaces, so
we can’t use the space as a delimiter.

After we define the command variable, we define three others. results is the playlist
from mpc, split into a List by newline characters. playlist, for now, is an empty
List, and maxLengths is a Dictionary, with List entries for position, artist, and album.
Let’s see how this is used.

for item in results
let song = split(item, " @")
let [position, artist, album, title] = song

call add(maxLengths['position'], len(position))

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bkviml/code/vsyntax/mpc/autoload/mpc.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

call add(maxLengths['artist'], len(artist))
call add(maxLengths['album'], len(album))

endfor

Here we use a for loop on results. We create a List called song to hold the split-
up track items, and then we assign those items to the variables position, artist,
album, and title. Then we add the length of each of these to the corresponding
List in maxLengths.

call sort(maxLengths.position, "LargestNumber")
call sort(maxLengths.artist, "LargestNumber")
call sort(maxLengths.album, "LargestNumber")

Next, we call sort() on each List in maxLengths.

Brief digression: notice that we aren’t giving sort() just the List to sort—we’re
also including "LargestNumber", which is the name of a custom function that
will do the sorting. Normally, we would use sort() like so:

let scientists = ['Robert Whate', 'Bill Cook', 'Alfred Clark',
\ 'Fred Stoner', 'Brad Noggin', 'Squirt']

echo sort(scientists)
" → ['Alfred Clark', 'Bill Cook', 'Brad Noggin',
" 'Fred Stoner', 'Robert Whate', 'Squirt']

And for a List like the one in the example, this works perfectly, because sort()
sorts on the String representations of the items in a List. But because it does
that, we can’t use this on a List comprising Number items:

let numbers = [4, 5, 15, 78, 9]
echo sort(numbers) " → [15, 4, 5, 78, 9]

The LargestNumber() function, as you’ll see when we add it, won’t sort alphabet-
ically, so it will avoid this problem. (Strange as it may seem, this custom
function is actually the officially recommended solution for sorting numbers;
see :help sort().) But this concludes our digression. For now, add the next part
of mpc#GetPlaylist():

vsyntax/mpc/autoload/mpc.vim
for item in results

let song = split(item, " @")
let [position, artist, album, title] = song

if(maxLengths.position[-1] + 1 > len(position))
let position = repeat(' ',

\ maxLengths.position[-1] - len(position))
\ . position

endif
let position .= ' '
let artist .= repeat(' ', maxLengths['artist'][-1] + 2 - len(artist))

• Click HERE to purchase this book now. discuss

The Vim Syntax File • 9

http://media.pragprog.com/titles/bkviml/code/vsyntax/mpc/autoload/mpc.vim
http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

let album .= repeat(' ', maxLengths['album'][-1] + 2 - len(album))

call add(playlist,
\ {'position': position, 'artist': artist,
\ 'album': album, 'title': title})

endfor

After sorting the maxLengths, we again loop through the results, this time using
spaces to pad each of the values that makes up a track. position is right-aligned
—we add padding to its beginning rather than to its ending—and the others
are left-aligned.

To add the correct number of spaces, we use the function repeat(). It takes two
arguments: a value to repeat, which in our case is a space character, and a
number of times to repeat that value, which we calculate. We either prepend
or append the spaces to the track values, and to get the number of spaces,
we use the longest corresponding item from maxLengths minus the length of
the current item.

At the loop’s end we add a new Dictionary, containing the padded track items,
to the playlist we defined at the start of the function.

return playlist
endfunction

And last of all, we return the playlist. That’s a fairly straightforward process
on which we won’t spend much time.

Oh, right! Before we can use this, we need to add LargestNumber():

function! LargestNumber(no1, no2)
return a:no1 == a:no2 ? 0 : a:no1 > a:no2 ? 1 : -1

endfunction

Simple enough. We take two numbers and return 0 if they’re equal, 1 if the
first number is larger, and -1 if the second number is greater.

Now we need to modify mpc#DisplayPlaylist() to make use of our new function. In
mpc#DisplayPlaylist(), replace everything up to the opening if statement with the
following highlighted lines:

function! mpc#DisplayPlaylist()
let playlist = mpc#GetPlaylist()➤

➤

for track in playlist➤

let output = track.position . " "➤

\ . track.artist➤

\ . track.album➤

\ . track.title➤

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

if(playlist[0].position == track.position)➤

execute "normal! 1GdGI" . output
else
call append(line('$'), output)

endif
endfor

endfunction

Also, as you see above, make sure to replace track with output the two times
that it occurs after the highlighted lines.

Our playlist’s tracks are now formatted nicely. Wait to check that, though—
it’s now time to add highlighting.

Using conceal with Syntax Regions
For the playlist highlighting, we’re going to use region syntax groups. We’ll use
special characters to delimit each item in a track, but we won’t show those
characters—they’re just to help us with highlighting. The effect will be to use
different colors for each item that makes up a track. To do this, we’ll make
use of a special feature of Vim’s syntax highlighting: conceal.

conceal is actually an argument that we can give to the :syntax command; it tells
Vim that it can hide (or conceal) an element when it comes across it. The
related argument concealends does the same thing, but for the start and end
characters of a region: when we use it, the ends become concealable, and the
text between the ends doesn’t. We’re going to be using concealends.

The conceal functionality depends on two Vim options: conceallevel, which takes
a number between 0 and 3, and concealcursor, which takes a string containing
any of the letters n, v, i, and c. Each letter stands for a Vim mode. The numbers
0 through 3 tell Vim what to do with concealable syntax elements—for example,
if conceallevel is set to 0, Vim shows these elements, or if it’s set to 3, it hides
them entirely. Vim treats the current cursor line specially; if the current mode
is included in concealcursor, then the line that the cursor is on is treated as
conceallevel says, but otherwise it’s shown. This makes it easier for us to edit
concealable syntax items—we can set them to be shown when we move the
cursor over them.

We can combine the concealends argument with one or both of two others, contains
and matchgroup, to set separate highlighting for an element and its ends. contains
refers to the text without the ends. In the case of a string delimited by quotes,
that would be the string itself. matchgroup is a group name containing the ends,
which would be the quotes in that string.

• Click HERE to purchase this book now. discuss

Using conceal with Syntax Regions • 11

http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

Say we wanted text to be shown in bold when we surrounded it by asterisks.
We could use matchgroup in something like this:

syntax region mdBold matchgroup=boldEnds start=/*/ end=/*/ concealends

And then we could highlight the mdBold group like this:

highlight mdBold cterm=bold gui=bold

And then, if we set the conceallevel option correctly, we could write this:

This is *bold* text.

Vim would hide the asterisks and display the word bold in a bold font.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bkviml
http://forums.pragprog.com/forums/bkviml

