
Extracted from:

Programming Cocoa with Ruby
Create Compelling Mac Apps Using RubyCocoa

This PDF file contains pages extracted from Programming Cocoa with Ruby, published

by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Brian Marick.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-19-0

ISBN-13: 978-1-934356-19-7

Printed on acid-free paper.

P1.0 printing, July 2009

Version: 2009-8-7

http://www.pragprog.com

REACTING TO BUTTON STATE 92

6.3 Reacting to Button State

When a button is clicked, it invokes an action method. That action

method can query the button for its state and act appropriately. Here’s

such code:

Download fenestra/reshaped-but-gutted/AppChoiceController.rb

ib_action :chooseOrHeal

def chooseOrHeal(sender)

NSLog("AppChoiceController button pushed.")

if @button.state == NSOnState

NSLog("Fenestrate '#{@comboBox.stringValue}'.")

else

NSLog("Heal.")

end

end

Before you can see that working, you’ll need to connect the button

to the chooseOrHeal method, using Interface Builder. (Either you can

drag to the button from the AppChoiceController’s chooseOrHeal received

action or you can drag from the button’s selector sent action to the App-

ChoiceController.)

For the complete description of buttons, see the NSButton class reference

and Button Programming Topics for Cocoa [App08e].

6.4 Using Nibs to Avoid Dependencies

The AppChoiceController connected to a TranslatorEnlister is shown in Fig-

ure 6.1, on page 85. It would be easy enough for it to create that Trans-

latorEnlister inside its awakeFromNib:

@translatorEnlister = TranslatorEnlister.alloc.init

However, I have a learned aversion to making one class’s code explicitly

name another class. That tends to make the code harder to change, and

it definitely makes it harder to test. Instead, I can make the connection

to the TranslatorEnlister be an outlet, no different in principle from the

outlets to the button and combo box. That’s done at Ê, as shown here:

Download fenestra/reshaped-but-gutted/AppChoiceController.rb

class AppChoiceController < Controller

Upward to the view

ib_outlets :comboBox, :button

Downward into guts
Ê ib_outlet :translatorEnlister

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/AppChoiceController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/AppChoiceController.rb
http://www.pragprog.com/titles/bmrc

USING NIBS TO AVOID DEPENDENCIES 93

Once we tell it about TranslatorEnlister, nib loading can do the connecting

for us. Having the outlet set from outside the class is a convenient form

of dependency injection.2

First, we need a TranslatorEnlister to load. In this version of the application,

we’re just building scaffolding, so there’ll be no actual translators. The

TranslatorEnlister will just programmatically supply the same two bits of

information we already specified in IB: what should go in the combo-

box-as-a-list and what should be the initial value of the combo-box-as-

a-text-field. Here’s a way to do that:

Download fenestra/reshaped-but-gutted/TranslatorEnlister.rb

class TranslatorEnlister < OSX::NSObject

include OSX

attr_reader :choices, :favorite

def init

@favorite = "sample webapp com.exampler.counting"

@choices = [

@favorite,

"for other apps: use.dot.format.name"

]

super_init

end

def awakeFromNib

NSLog("TranslatorEnlister awakes from Nib.")

end

end

To Interface Builder, it doesn’t matter in the slightest that TranslatorEn-

lister has nothing to do with, well, the interface. You create and connect

it the same way you would any other object.

2. My favorite article on dependency injection is J. B. Rainsberger’s “Injecting testability

into your designs” [Rai05].

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/TranslatorEnlister.rb
http://www.pragprog.com/titles/bmrc

INITIALIZING COMBO BOXES 94

6.5 Initializing Combo Boxes

Here’s how the AppChoiceController can put the information provided by

the TranslatorEnlister into the combo box:

Download fenestra/reshaped-but-gutted/AppChoiceController.rb

def awakeFromNib

NSLog("App Choice Controller awakes from Nib.")
Ê @comboBox.removeAllItems

@translatorEnlister.choices.each do | t |
Ë @comboBox.addItemWithObjectValue(t)

end
Ì @comboBox.stringValue = @translatorEnlister.favorite

end

Ê We’ve already initialized the list to have two items in Interface

Builder. We could remove them there, but it’s prudent to clear

the list anyway. Remove this line to see a list with duplicates.

Ë This is where items are added to the list. The method name, add-

ItemWithObjectValue, hints that the argument can be something

other than a string. Indeed, it can be any object. Try changing

the choices array to be an array of integers. You’ll see that they

display reasonably, and they’re correctly logged in chooseOrHeal

when the button is clicked.

Ì This line sets the value of the text field. It does nothing to the

combo box’s list. An alternate way to get the same effect would be

to use selectItemAtIndex with the argument 0.

See Apple’s Combo Box Programming Topics [App08i] for more on combo

boxes.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/AppChoiceController.rb
http://www.pragprog.com/titles/bmrc

WHAT NOW? 95

6.6 What Now?

We now have four objects (three controllers and a TranslatorEnlister) that,

for the most part, have no references to each other—but they have

to exchange information. I’m going to use the notification system (as

described in Section 4.1, Notifications Within an App, on page 64) to do

that. That’s reasonably straightforward: every arrow in Figure 6.2, on

page 86, turns into the posting of a notification. I’ll briefly show what

that code looks like in the next chapter. My ulterior motive for doing

that is to motivate the chapter after that, which uses Ruby to make

such code more pleasant.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bmrc

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Cocoa with Ruby’s Home Page

http://pragprog.com/titles/bmrc

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/bmrc.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/bmrc
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/bmrc
www.pragprog.com/catalog

	Reshaping Fenestra
	Decoupled Controllers
	Reacting to button state
	Using Nibs to avoid dependencies
	Initializing combo boxes
	What now?

