
Extracted from:

Programming Cocoa with Ruby
Create Compelling Mac Apps Using RubyCocoa

This PDF file contains pages extracted from Programming Cocoa with Ruby, published

by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Brian Marick.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-19-0

ISBN-13: 978-1-934356-19-7

Printed on acid-free paper.

P1.0 printing, July 2009

Version: 2009-8-7

http://www.pragprog.com


MENUS 29

Try This Yourself

You can add text to the status bar with setTitle. Try that in statusbar-

item.rb, both with and without an accompanying image.3

2.3 Menus

Our status bar item doesn’t do anything, so let’s give it a menu. For

fun, I’ll use it to make the app speak to us. That’s not hard: I’ll use a

Cocoa object, NSSpeechSynthesizer, to turn text into speech.

Before starting that, let’s separate concerns. App will concern itself only

with application-wide events such as being launched and being termi-

nated. A new class, SpeechController, will do everything else.

Here’s the new version of App:

Download statusbar/speaking-statusbar.rb

class App < NSObject

def applicationDidFinishLaunching(aNotification)

statusbar = NSStatusBar.systemStatusBar

status_item = statusbar.statusItemWithLength(NSVariableStatusItemLength)

image = NSImage.alloc.initWithContentsOfFile("stretch.tiff")

status_item.setImage(image)
Ê SpeechController.alloc.init.add_menu_to(status_item)

end

end

Only one thing has changed, at line Ê. We just create a SpeechController,

ask it to add its menu to the status bar item, and then forget about

it. Notice that a SpeechController is an Objective-C object—you can tell

because it’s created with alloc and init.

And here’s the SpeechController class:

Download statusbar/speaking-statusbar.rb

class SpeechController < NSObject

def init
Ê super_init

@synthesizer = NSSpeechSynthesizer.alloc.init
Ë self

end

Like App, SpeechController descends from NSObject. A SpeechController

needs to define its own init, though, because we want it to create an

3. If you’re not working in the statusbar directory, get a copy of statusbar/stretch.tiff from

there before running the script.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmrc/code/statusbar/speaking-statusbar.rb
http://media.pragprog.com/titles/bmrc/code/statusbar/speaking-statusbar.rb
http://www.pragprog.com/titles/bmrc


MENUS 30

NSSpeechSynthesizer and hold onto it in an instance variable. Such an init

method differs from Ruby’s familiar initialize in two ways:

Ê In an ordinary Ruby class, the initialize method uses super to call its

superclass’s initialize method. In an NSObject subclass, init calls the

superclass’s init method with super_init. (In general, any overriding

method method calls its superclass version with super_method.)

As you saw on page 28, init methods can sometimes return nil. For

that reason, a pedantically safe use of the superclass would look

like this:

return nil unless super_init

In this case, though, I know that NSObject’s init always returns self.

(In fact, it does nothing but return self, so I could omit the line

entirely.)

Ë In an ordinary Ruby class, initialize’s return value is irrelevant. In

contrast, an NSObject subclass must return self (or, in the case of

error, nil). If I’d forgotten line Ë, code like this:

s = SpeechController.alloc.init

s.add_menu_to(status_item)

. . . would make s an NSSpeechSynthesizer and then blow up on the

next line with a “no such message” failure. Even after seeing a

lot of those failures, it still sometimes takes me much too long to

think of blaming init.

Now for the menu. In Cocoa, a menu is represented by an NSMenu that

contains NSMenuItem objects. It’s those objects that receive “you’ve been

clicked” events from the window manager. If an NSMenuItem handles the

event, it forwards the work by calling an action method attached to a

target object. (See Figure 2.2, on the following page.)

The NSMenu itself does only a little work. It asks each item for its name

and key equivalent (the keystroke that selects that item via the key-

board instead of the mouse). Then it paints all the items on the screen.

SpeechController’s add_menu_to, shown in Figure 2.3, on the next page,

wires all this together.

It begins (Ê) by allocating an NSMenu object and attaching it to what-

ever container was given. This is another example of duck typing (and

a benefit of separation of concerns): this particular class doesn’t care

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bmrc


MENUS 31

a target object
(with an action method)

an NSMenu an NSMenuItem

...

...

The Cocoa Runtime

Youʼve been clicked

Run that action method

Figure 2.2: Clicking a menu

Download statusbar/speaking-statusbar.rb

def add_menu_to(container)
Ê menu = NSMenu.alloc.init

container.setMenu(menu)

Ë menu_item = menu.addItemWithTitle_action_keyEquivalent(

"Speak", "speak:", '')
Ì menu_item.setTarget(self)

menu_item = menu.addItemWithTitle_action_keyEquivalent(
Í "Quit", "terminate:", 'q')
Î menu_item.setKeyEquivalentModifierMask(NSCommandKeyMask)
Ï menu_item.setTarget(NSApp)

end

Ð def speak(sender)

@synthesizer.startSpeakingString("I have nothing to say.")

end

end

statusbar/speaking-statusbar.rb

Figure 2.3: Building a menu

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmrc/code/statusbar/speaking-statusbar.rb
http://www.pragprog.com/titles/bmrc


MENUS 32

what it’s attached to, so long as that object responds to setMenu. Today,

it’s a status bar item. Tomorrow, it could be something else.

Next, an NSMenuItem is created and assigned to the menu by addItem-

WithTitle_action_keyEquivalent (line Ë). What’s up with that name? Objec-

tive-C has an interesting and nearly unique way of naming methods.

Here’s (almost) what Objective-C code that added a menu item would

look like:4

[menu addItemWithTitle: "Speak" action: "speak:" keyEquivalent: ""]

The method being called here is named addItemWithTitle:action:keyEqui-

valent:. It takes exactly three arguments that have to come in exactly

the defined order.

RubyCocoa has to provide you with a way of naming that Objective-C

method. It can’t use the same name, because method names in Ruby

can’t contain colons. So, the colons are replaced with underscores. To

avoid excessive ugliness, you can leave off the last underscore, as I did

at line Ë.5

The first and third arguments to the method provide the name and key

equivalent. (This particular item has no key equivalent.) The second

argument is the name of the message to send when the menu item

is selected. Although the speak method is defined in Ruby, I’ve used

Objective-C’s notion of its name: "speak:". The name ends in a colon

because (as you’ll see shortly), speak takes a single argument.

Which object receives the speak: message is set on the next line (Ì). In

this case, the SpeechController handles the message itself.

Lines Í and Î show how you create a keyboard equivalent. Those

are almost never plain characters like q . They’re usually characters

with modifiers, like Command - Q . For whatever reason, the character and

modifier keystrokes are set in separate methods.

The menu item will send a terminate: message, but not to SpeechCon-

troller. Since it’s a message about the whole app, it’s targeted at NSApp

(line Ï), an Objective-C class that implements terminate:.

4. I’ve removed a little type casting because it’s not important to this explanation. To be

pedantic, the title and key equivalent shouldn’t be strings. They should be NSString objects,

which are written as @"string". Similarly, the action argument should be a “selector,” not

a string. You’ll see more—and more correct—examples of Objective-C later in the book.

5. That’s not always safe: consider an Objective-C class that has two methods, action

and action:.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bmrc


AN APPLICATION BUNDLE 33

The speak (Ð) action is simple. Notice that it takes a sender argument,

which will be the NSMenuItem that was clicked. Action methods can use

the sender to query or change the user interface.

If you run the app, you’ll probably notice that the synthesizer takes a

second or two to start talking after you click the menu item. Presumably

it’s doing some first-time initialization. It’s more prompt the second

time.

Try This Yourself

1. Put this at the end of speak:

puts sender.objc_methods.grep(/title/i)

Use one or more of those methods to change the menu after some-

thing is said.

2. While terminating, NSApp will send its delegate two messages:

applicationShouldTerminate and applicationWillTerminate. The first lets

the delegate decide to cancel shutdown, and the second gives it a

chance to do any of its own cleanup.

Use applicationWillTerminate to print out “Goodbye, cruel world!”

3. Make applicationShouldTerminate return false unless the app has

spoken at least twice, true otherwise. See what happens when you

return values like nil, "fred", and the integer 0.

A small quirk: unlike the delegate messages you’ve seen so far,

applicationShouldTerminate takes an NSApplication as its argument,

so sender or app would be a better name than aNotification.

(If you need help, there’s a solution in statusbar/speaking-statusbar-

solution.rb.)

2.4 An Application Bundle

Fine though our script may be, it doesn’t behave like a Mac applica-

tion. If you double-click it, it doesn’t launch. (Most likely, it opens in

an editor.) It doesn’t get an icon in the Dock, you can’t see it if you

Command - Tab through open applications, and so on. In this section, I’ll

explain what’s special about apps. You’ll create your first one in Chap-

ter 3, Working with Interface Builder and Xcode, on page 39.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/bmrc


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Cocoa with Ruby’s Home Page

http://pragprog.com/titles/bmrc

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/bmrc.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/bmrc
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/bmrc
www.pragprog.com/catalog

	How Do We Get This Thing Started?
	Menus
	An application bundle




