
Extracted from:

Everyday Scripting with Ruby
For Teams, Testers, and You

This PDF file contains pages extracted from Everyday Scripting with Ruby, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 7

The Churn Project: Writing
Scripts without Fuss

Scripting can be straightforward or horrible. When it’s horrible, it feels

like the script is actively fighting you and that every try at making some-

thing better makes something else worse. The way to make it straight-

forward is to proceed in tiny, tested steps. In this chapter, I’ll show you

how to do that.

“Straightforward” doesn’t mean “error-free.” Expect to make mistakes

all the time; the trick is to recover from them smoothly and quickly. This

chapter will demonstrate that by showing how I handle two blunders of

the sort that often lead to a quagmire.

One warning: in this chapter, I’m going to explain my thinking as I

write a script. It takes a lot longer to explain thoughts than to have

them. Don’t let all the words in this chapter fool you into thinking that

scripting requires agonizing over every decision. Instead, strive to make

decisions crisply. If you can’t decide which of two possibilities is better,

it probably doesn’t matter which you pick. If you’re wrong, just recover

and move on.

7.1 The Project

If you ask a programmer what she’s working on, she might say “audit-

ing” or “the persistence layer.” Systems are usually divided into named

subsystems with boundaries that are more or less clear. The source

code for different subsystems is usually stored in different folders.

THE PROJECT 70

prompt> svn log --revision 'HEAD:{2005-07-30}' svn://rubyforge.org/var/ ←֓

svn/churn-demo/inventory

--

r2 | marick | 2005-08-07 14:26:21 -0500 (Mon, 07 Aug 2005) | 1 line

added code to handle merger

--

r1 | marick | 2005-08-07 14:21:47 -0500 (Mon, 07 Aug 2005) | 1 line

first touches

No commit for revision 0.

--

Figure 7.1: Changes to a Subsystem

prompt> ruby churn.rb

Changes since 2005-08-05:

audit ********* (45)

fulfillment **** (19)

persistence *** (17)

ui *** (15)

util * (3)

inventory * (2)

Figure 7.2: Output From This Chapter’s Program

When deciding where to concentrate effort, a tester might want to know

which subsystems have changed the most. That information is avail-

able from the project’s version control system. My favorite is called

Subversion. Figure 7.1 shows one way of asking Subversion about a

fake project I’ve set up. If you have Subversion on your system and

are on the Internet, you can type the same line to get similar infor-

mation. Subversion, like the best things in life, is free. You can find

it at http://subversion.tigris.org. You don’t need it to work on this project,

though.

Subversion’s output shows that the “inventory” subsystem has changed

twice since July 30. That’s a pretty ugly way to get the information,

though, and it shows you only one subsystem at a time. In this chapter,

we’ll write a script that asks the same question of all the subsystems in

a project, producing output like that of Figure 7.2.

CLICK HERE to purchase this book now.

http://subversion.tigris.org
http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 71

The output isn’t fancy, but there’s nothing wrong with simple and func-

tional. Notice the script somehow knows what subsystems there are

(the six listed) and from when it should start counting changes (the date

one working month before the script is run). It might be nice to allow

those defaults to be overridden, but we won’t bother for this script. (We

will for later ones.)

7.2 Building a Solution

A technique that often works well is one I call scripting by assumption.1 scripting by assumption

The trick is to start writing the script by assuming that Ruby provides

all the methods you need. Here’s some starting code I wrote for churn,

all the while assuming that everything hard would be done for me:

Download churn/snapshots/churn.v1.rb

Ê if $0 == __FILE__
Ë subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']
Ì start_date = month_before(Time.now)

Í puts header(start_date)

subsystem_names.each do | name |
Î puts subsystem_line(name, change_count_for(name))

end

end

I’ll explain these lines over the next several pages. Unless you like flip-

ping pages back and forth, you may find it more convenient to look at

the source online. The callout symbols (like Í) are included in the file.

They’re shown as end-of-line comments like this: end-of-line comments

puts header(start_date) #(4)

When it sees the comment character #, Ruby ignores everything from

there until the end of the line.

Our script must produce two things: a header string containing not

much more than the starting date of the changes, and a series of

strings, one for each subsystem, that contains a name, a change count,

and asterisks for a simple visual representation of the change count.

The asterisks make the output look something like a histogram tipped

on its side.

1. That’s not a name I made up, but I can’t find who said it first. Abelson and Sussman

write of “programming by wishful thinking” in Structure and Interpretation of Computer

Programs [ASS84]. It’s the same idea, but I like “assumption” a bit better.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v1.rb
http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 72

At Í, I assume Ruby comes with a method, header, that produces a

correctly formatted header string. When writing that line, I came to a

fork in the road. I could have the script tell header what date to print,

or I could have it figure it out (by calculating the date one month before

the moment the script runs). The choice comes down to this:

puts header(start_date)

or this:

puts header

I chose the first because the second implies that the header string is

always the same. It’s not: it varies, so it seems sensible to make the

cause of variation explicit. When I wrote that line, I didn’t know what

start_date really was. I assumed it’d become obvious later.

At Î, I assume a method, subsystem_line, that returns a string ready

to print. The contents of that string will vary depending on the sub-

system’s name and count of changes. Should the count of changes be

given to subsystem_line directly or indirectly?

• “Directly” means that the script will get a subsystem’s change

count from Subversion and hand it to subsystem_line. In that case,

subsystem_line’s definition would start like this:

def subsystem_line(name, change_count)

• “Indirectly” means subsystem_line will itself ask Subversion for the

change count. To do so, it would need to know the starting date,

so its definition would start like this:

def subsystem_line(name, start_date)

I chose the direct approach because it makes it more obvious what’s

in the string that subsystem_line will create. It also follows a guideline

called separation of concerns. In the indirect case, subsystem_line has separation of concerns

two concerns: how to format a string and how to communicate with

Subversion. In the direct case, subsystem_name is only about formatting,

and some other method is about Subversion.

Since subsystem_line has to be called for each subsystem, it makes sense

to stash all the subsystem names in an array and iterate over them

with each. The array is created and named at Ë. Since a project’s list

of subsystems will rarely change, it makes sense to “hard-code” it.

I’m assuming everyone always wants to know the number of changes

in the last working month, so start_date is defined that way at Ì. I could

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 73

have defined it as an argumentless method last_month, but what I’ve

got seems to read more clearly: “the starting date is the month before

right now.” (When the Time object is sent the message now, it returns an

object that represents the current instant of time.) And, as you’ll learn

in Section 7.2, Test-driving month_before, passing in a date also makes

test-driven scripting easier.

I created a variable start_date to name the day from which to start look-

ing for changes, but when I needed a change count to give to subsys-

tem_line, I passed it along directly:

puts subsystem_line(name, change_count_for(name))

I could have written this:

change_count = change_count_for(name)

puts subsystem_line(name, change_count)

Why didn’t I? There are two reasons for adding a variable to a script.

The first is that you’re using an object more than once and you’re either

unable or unwilling to create it twice. That doesn’t apply here. The other

is that the variable helps someone understand the script. My main rea-

son for creating start_date was that I could put it next to subsystem_names

at the beginning of the script. All the data the script works with depends

on the data those two variables name, so it makes sense to draw atten-

tion to that by putting them first and together. I can’t see any way that

creating a variable change_count would help a reader.

There’s one more bit of code to mention: Ê. Because of it, the script

can both be run from the command line and also be loaded into irb.

(The trick was explained in Section 5.7, Prelude to the Exercises, on

page 58.)

Test-driving month_before

It’s increasingly common for programmers to build their code test-first: test-first

if the code doesn’t do something you want, first write a test that fails

because of that, and then write the minimal amount of code that passes

the test. If more is needed, write the next test and then the next bit

of code. Continue until the code does what you want. Along the way,

clean up code whenever it starts to get messy, making sure that the

cleaned-up code always passes all the tests. (The technical term for

such cleanup is refactoring.) refactoring

With practice, writing code with tests is faster than writing code alone

(because of the time you don’t have to spend hunting for bugs), and it’s

usually a lot more pleasant.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 74

Download template-for-tests.rb

Ê require 'test/unit'
Ë require 'X'

Ì class X < Test::Unit::TestCase

Í def test_X
Î assert_equal('expected', 'actual')

end

end

template-for-tests.rb

Figure 7.3: A Test Template

Ruby comes with a package called Test::Unit that lets you set up tests Test::Unit

without having to write much support code. You can find a test template

in Figure 7.3. Parts you’ll need to fill in are marked with an X.

Ê The test file is run like any other script. require loads all the Ruby

code that makes up Test::Unit into that running script. It’s almost

the same as using load in irb.
Ë Usually, there’s one test file for each script file. This line loads the

script under test. In this case, ‘X’ will be replaced with 'churn'.

(Note that, unlike load, require doesn’t need the .rb at the end of

the filename; it can figure it out.)
Ì For the moment, let’s ignore what this line means beyond saying

that class. . . end serves to group the tests. See Chapter 11, Classes

Bundle Data and Methods, beginning on page 114, for more. ‘X’

names the file’s group or suite of tests. You can pick any name suite

you want, but it must begin with a capital letter. ChurnTests seems

reasonable.
Í When you run a test file (e.g., ruby churn-tests.rb), Test::Unit exe-

cutes each method whose name begins with test_. It ignores other

methods. The ones it ignores can be used as utilities by the ones

it does run.
Î Each assert_equal message compares its first argument (the

expected value) to the second (the actual value produced by the

code under test). If they aren’t equal, it complains. (You’ll see a

typical complaint in a minute.)

What would a test for month_before do? A working month is 28 days.

So the month before January 29 is January 1. In the script proper,

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmsft/code/template-for-tests.rb
http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 75

Joe Asks. . .

Why Does Ruby Have Both require and load?

require and load do almost the same thing. The important dif-
ference is that require remembers the files it’s loaded and will
load each only once. That behavior is useful when script A.rb

uses a method in B.rb and B.rb uses a method in A.rb. If A.rb

had load ’B.rb’ and B.rb had load ’A.rb’, then loading A.rb would
load B.rb, which would load A.rb, which would load B.rb. . . .

Given require, why ever use load? Suppose you’re writing some
code in a file. You require it into irb and try it. Oops, it’s wrong.
You change the file. If you require it again, you won’t get the
changed version (because Ruby knows you’ve already loaded
that file). You have to use load to get the new version.

So use require in script files and load in irb.

Time.now is used as the argument to month_before, but the test doesn’t

have to use a Time that represents the current instant. In fact, it can’t

use that. If it used Time.now, the actual value would change every time

the test ran. What would the expected value be?

Fortunately, Time provides methods that construct any arbitrary time:

local is the one that constructs Times relative to the local time zone.

That means we can ask month_before to pass this test:

Download churn/snapshots/churn-tests.v1.rb

def test_month_before_is_28_days

assert_equal(Time.local(2005, 1, 1),

month_before(Time.local(2005, 1, 29)))

end

Let’s see that test fail.2

Before you can run the test, you’ll need to copy it from the snapshots

folder. On Windows, you do that like this:

prompt> copy snapshots\churn-tests.v1.rb churn-tests.rb

2. It’s common practice to run a test even if you know it will fail. I thought that was a

silly ritual until the first time I did it and saw no failure. I had put the test in the wrong

place, so Test::Unit hadn’t run it. If I hadn’t tried the test first, I might have written bad

code, run the tests, seen no failure, and thought I’d done well. That would have been bad.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v1.rb
http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 76

On Unix-like systems, it’s like this:

prompt> cp snapshots/churn-tests.v1.rb churn-tests.rb

All the tests assume they’re testing churn.rb. Unless you’ve already cre-

ated it, do that now by copying churn.v1.rb from the snapshots folder into

the current working folder. Be sure to copy it into churn.rb.

Having prepared the test, run it like this:

prompt> ruby churn-tests.rb

Loaded suite churn-tests

Started

E

Finished in 0.002627 seconds.

1) Error:

test_month_before_is_28_days(ChurnTests):

NoMethodError: undefined method ‘month_before' for #<ChurnTests:0x32f8f0>

churn-tests.rb:9:in ‘test_month_before_is_28_days'

1 tests, 0 assertions, 0 failures, 1 errors

The test correctly tells us that there’s no method named month_before

yet. Let’s define it. But where?

The test will requirechurn.rb. That means Ruby will ignore the body of

the if $0 == __FILE__ check. (See Section 5.7, Prelude to the Exercises, on

page 58.) So it should be above the if.

In order to see a more typical failure, let’s define month_before wrong:3

Download churn/snapshots/churn.v2.rb

def month_before(a_time)

end

Here’s the failure:

1) Failure:

test_month_before_is_28_days(ChurnTests) [churn-tests.rb:9]:

<Sat Jan 01 00:00:00 CST 2005> expected but was

<nil>.

1 tests, 1 assertions, 1 failures, 0 errors

An empty method returns nil, which certainly isn’t the Time expected.

Notice that the failure message identifies both the test that failed

3. I usually don’t bother running a test that fails because the method isn’t defined. I

define an empty method before running the test for the first time.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v2.rb
http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 77

Joe Asks. . .

What’s the Difference Between an Error and a Failure?

A Test::Unit test can fail in two ways. Our second test run
showed a failure. A failure means that what an assertion
asserts to be true isn’t in fact true. An error means that some-
thing else went wrong before the assertion was tried. In our
first test run, Ruby stopped the script when it discovered there
was no such method as month_before and, therefore, no return
value for assert_equal to compare against January 1, 2005.

Frankly, I always have to think for a minute when I’m asked
which is which. Perhaps that’s because I treat both cases the
same. I look at the explanation of what went wrong, I go to the
line number mentioned, and I fix the problem.

(test_month_before_is_28_days) and the line it failed on (line 9). The lat-

ter is useful when there’s more than one assertion in a test.

Let’s write the right code. To get an earlier Time, you subtract some

number of seconds:

irb(main):001:0> now = Time.now

=> Mon Aug 29 11:42:19 CDT 2005

irb(main):002:0> now-1

=> Mon Aug 29 11:42:18 CDT 2005

So all we have to do is subtract 28 days of seconds:

Download churn/snapshots/churn.v3.rb

def month_before(a_time)

a_time - 28 * 24 * 60 * 60

end

And it passes:

prompt> ruby churn-tests.rb

Loaded suite churn-tests

Started

.

Finished in 0.00247 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v3.rb
http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 78

It’s such a satisfying moment when that happens. Those frequent jolts

of pleasure are what makes test-driven scripting so satisfying. You

won’t believe it until you try it.

Formatting Time

Now that we believe month_before works, we also believe that start_date

will name the right object after this assignment:

start_date = month_before(Time.now)

So it makes sense to now write the method, header, that uses the

returned Time:

Download churn/snapshots/churn.v3.rb

puts header(start_date)

Here are two possible tests:

Download churn/snapshots/churn-tests.v2.rb

def test_header_format

assert_equal("Changes since 2005-08-05:",

header(Time.local(2005, 8, 5)))

end

def test_header_format

assert_equal("Changes since 2005-08-05:",

header(month_before(Time.local(2005, 9, 2))))

end

For both, I just copied the expected output from Figure 7.2, on page 70.

The difference between the two is how they generate the value given to

header. One is a direct test: it uses Time.local to make exactly the Time direct test

it needs. The other is a bootstrapping test: it uses an already-tested bootstrapping test

method from the script under test to test a new method.

The two types of tests have contrasting advantages. A direct test is

usually easier to understand. It’s also usually easier to debug if it fails.

Suppose that I later change month_before and break it. Then both the

direct test_header_format and the test_month_before_is_28_days will fail. I’ll

have to decide which one to look at. If I look at test_header_format, I

have to wonder whether the problem is in header or in month_before.

That’s hardly a big deal in this case, but it can get cumbersome when

you have 200 tests that use month_before. It’s even worse if the change

to month_before deliberately changes its behavior (maybe I want it to

return a different kind of object). Then I may have to fix all 200 tests.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v3.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v2.rb
http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 79

The advantage of bootstrapping tests is that they’re more realistic and

thorough. Suppose it turns out that there’s a mismatch between what

month_before returns and what header expects. Perhaps month_before

returns a Time and header expects a string. A bootstrapping test for

header would detect that, but a direct test would not, since the test

that header is to pass will use the string it expects.

A second advantage of bootstrapping tests is that they use month_before

again. I made sure I tried a different kind of value in the test of

test_header_format than I did in the earlier test for month_before. Since,

in the previous test, both “now” and the date 28 days earlier are in the

same month, this time I picked ones in different months. I have no rea-

son to think that will find a bug, but I’ve found too many bugs through

sheer dumb luck to use the same value twice. On the other hand, fig-

uring out what date to hand to month_before to cause it to hand August

5 to header was more work than the direct test requires. Was it worth

it?

Different people have different biases. Mine is toward bootstrapping

tests, so I’ll use the second version. But if I had a lot of tests to write

for header, I’d make only a couple of them bootstrapping. I’d make the

rest of them direct so that I didn’t face the prospect of changing many

tests if I ever change my mind about what month_before should do.

Everyone finds their own balance between testing directly and testing

indirectly. You will too.

The only tricky part about implementing header is formatting dates.

Ruby’s default format (from the scripter-friendly inspect message) is

something like "Mon Aug 29 12:20:00 CDT 2005". That’s not the format we

want. Fortunately, Time objects respond to the gracefully named strftime

message. And here’s an example of the result:

irb(main):002:0> Time.now.strftime('%Y-%m-%d')

=> "2005-08-29"

Each character that follows % picks out a piece of the Time and places

the result in the string strftime returns. You can find the complete table

of format characters either in a Ruby reference like Programming Ruby

[TH01] or like this:

prompt> ri Time.strftime

(You can find information about ri in the sidebar on page 121.)

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft

BUILDING A SOLUTION 80

header can just be a more elaborate format string:

Download churn/snapshots/churn.v3.rb

def header(a_time)

a_time.strftime("Changes since %Y-%m-%d:")

end

The test passes:

prompt> ruby churn-tests.rb

Loaded suite churn-tests

Started

..

Finished in 0.006264 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

Note that the earlier test still passes. That’s good to know.

Formatting Strings

subsystem_line is another method that is about formatting, so let’s do

that next. Here’s a test:

Download churn/snapshots/churn-tests.v3.rb

def test_normal_subsystem_line_format

assert_equal(' audit ********* (45)',

subsystem_line("audit", 45))

end

The subsystem name is right-justified in a field fourteen characters

wide, followed by a space, followed by nine asterisks and the count of

45.

What does this test tell us about the method we have to write? It will

look something like this:

def subsystem_line(subsystem_name, change_count)

code here...

end

subsystem_name’s string can be justified with Ruby’s rjust method. That

works like this:

irb(main):002:0> 'audit'.rjust(14)

=> " audit"

Next the output has the row of nine asterisks. I’ll put off figuring out

how to make that string by assuming there’s a method called asterisks_for

that converts an integer into the right number of asterisks (nine, the

number of changes divided by five). It’ll be used like this:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v3.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v3.rb
http://www.pragmaticprogrammer.com/titles/bmsft

A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

Interested in improving your career? Want to make yourself more valuable to your orga-

nization, and avoid being outsourced? Then read My Job Went to India, and find out great

ways to keep yours. If you’re interested in moving your career more towards a team lead

or mangement position, then read what happens Behind Closed Doors.

My Job Went to India
The job market is shifting. Your current job may be

outsourced, perhaps to India or eastern Europe.

But you can save your job and improve your career

by following these practical and timely tips. See

how to: • treat your career as a business • build

your own brand as a software developer • develop

a structured plan for keeping your skills up to date

• market yourself to your company and rest of the

industry • keep your job!

My Job Went to India: 52 Ways to Save Your Job

Chad Fowler

(185 pages) ISBN: 0-9766940-1-8. $19.95

http://pragmaticprogrammer.com/titles/mjwti

Behind Closed Doors
You can learn to be a better manager—even a great

manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring

• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby

(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

http://pragmaticprogrammer.com/titles/mjwti
http://pragmaticprogrammer.com/titles/rdbcd

Pragmatic Methodology
Need to get software out the door? Then you want to see how to Ship It! with less fuss and

more features. And every developer can benefit from the Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress on

your project. • You want to make yourself and your

team more valuable. • You’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility

throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •

Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

Facets of Ruby Series
Sharpen your Ruby programming skills with James Edward Gray’s Best of Ruby Quiz, or

see how to integrate Ruby with all varieties of today’s technology in Enterprise Integration

with Ruby.

Best of Ruby Quiz
Sharpen your Ruby programming skills with

twenty-five challenging problems from Ruby Quiz.

Read the problems, work out a solution, and

compare your solution with answers from others.

• Learn using the most effective method available:

practice • Learn great Ruby idioms • Understand

sticky problems and the insights that lead you past

them • Gain familiarity with Ruby’s standard

library • Translate traditional algorithms to Ruby

Best of Ruby Quiz

James Edward Gray II

(304 pages) ISBN: 0-9766940-7-7. $29.95

http://pragmaticprogrammer.com/titles/fr_quiz

Enterprise Integration with Ruby
See how to use the power of Ruby to integrate all

the applications in your environment. Lean how to

• use relational databases directly, and via

mapping layers such as ActiveRecord • Harness

the power of directory services • Create, validate,

and read XML documents for easy information

interchange • Use both high- and low-level

protocols to knit applications together

Enterprise Integration with Ruby

Maik Schmidt

(360 pages) ISBN: 0-9766940-6-9. $32.95

http://pragmaticprogrammer.com/titles/fr_eir

http://pragmaticprogrammer.com/titles/fr_quiz
http://pragmaticprogrammer.com/titles/fr_eir

Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the language. The Pick-

axe: Programming Ruby: The Pragmatic Programmer’s Guide, Second Edition. This is the

definitive guide for all Ruby programmers. And you’ll need a good text editor, too. On the

Mac, we recommend TextMate.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods

• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit

testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/textmate

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Everyday Scripting’s Home Page

http://pragmaticprogrammer.com/titles/bmsft

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/bmsft.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/bmsft
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/bmsft
www.pragmaticprogrammer.com/catalog

	Contents
	Introduction
	How the Book Works
	An Outline of the Book
	Service After the Sale
	Supplements
	Acknowledgments

	Getting Started
	Download the Practice Files
	In the Beginning Was the Command Line
	Do You Need to Install Ruby?
	Installing Ruby
	Your Two Basic Tools
	Prompts, Command Lines, Prompts, and irb
	It's Time to Make Mistakes

	The Basics
	A First Script: Comparing File Inventories
	A Script in Action
	The Ruby Universe
	Objects Send and Receive Messages
	Variables Name Objects
	Comparing Arrays
	Printing to the Screen
	Making a Script
	Where Do We Stand?
	Exercises

	Ruby Facts: Arrays
	Three Improvements and a Bug Fix
	Command-line Arguments
	Ignoring Case
	Methods
	Dissecting Strings
	Fixing a Bug
	Where Do We Stand?
	Prelude to the Exercises
	Exercises

	Ruby Facts: If, Equality Testing, and Unless
	if …elsif …else
	When Are Objects Equal?
	A Shorthand Version of if
	unless
	The Question Mark Operator

	Growing a Script
	The Churn Project: Writing Scripts without Fuss
	The Project
	Building a Solution
	Where Do We Stand?
	Exercises

	Ruby Facts: Booleans
	Other Boolean Operators
	Precedence
	Every Object Is a Truth Value
	Boolean Expressions Can Select Objects

	Our Friend, the Regular Expression
	Regular Expressions Match Strings
	Dissecting Strings with Regular Expressions
	Reordering an Array
	Where Do We Stand?
	Exercises

	Ruby Facts: Regular Expressions
	Special Characters
	Grouping and Alternatives
	Taking Strings Apart
	Variables Behind the Scenes
	Regular Expression Options
	Wait, There's More…
	Exercises

	Classes Bundle Data and Methods
	Classes Define Methods
	Objects Contain Data
	Where Do We Stand?
	Exercises

	Ruby Facts: Classes (with a Side Order of Symbols)
	Defining Accessors
	Self
	Class Methods
	Class Variables and Globals
	Exercises

	Working in a World Full of People
	Scraping Web Pages with Regular Expressions
	Treating Web Pages Like Files
	Restricting Attention to Part of the Page
	Plucking Out the Title and Authors
	Hashes Store Named Data
	Taking the Trip
	Exercise Yourself

	Other Ways of Working with Web Applications
	Handling XHTML
	Driving the Browser
	Direct Access to Underlying Protocols

	Working with Comma-Separated Values
	The CSV Library
	Using Blocks for Automatic Cleanup
	More CSV Operations
	Applying It All to affinity-trip.rb
	Discovering and Understanding Classes in the Standard Library
	Replacing Code with Data

	Ruby Facts: Hashes
	Ruby Facts: Argument Lists
	Optional Arguments
	Rest Arguments
	Keyword Arguments

	Downloading Helper Scripts and Applications
	Finding Packages
	Using setup.rb
	Using RubyGems
	Understanding What You've Downloaded

	A Polished Script
	The Load Path
	Avoiding Filename Clashes
	Avoiding Class Name Clashes Using Modules
	A Script to Do the Work for You
	Working Without Stepping on Yourself
	The rakefile
	Location-independent Tests
	Exercises

	Ruby Facts: Modules
	Nested Modules
	Including Modules
	Classes Are Modules

	When Scripts Run into Problems
	Use Exceptions to Report Problems
	An Error-handling Strategy
	Your Exception-handling Options
	Methods That Use Blocks
	Exercises

	The Accomplished Scripter
	Frameworks: Scripting by Filling in Blanks
	Using the watchdog Script
	Inheritance
	Gathering User Choices

	Discovery Is Safer Than Creation
	The Story of Barker
	What Happens Where?
	Modules Instead of Superclasses

	Final Thoughts

	The Back of the Book
	Glossary
	Solutions to Exercises
	Solutions for Chapter 3
	Solutions for Chapter 5
	Solutions for Chapter 7
	Solutions for Chapter 9
	Solutions for Chapter 10
	Solutions for Chapter 11
	Solutions for Chapter 12
	Solutions for Chapter 21

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

