
Extracted from:

Everyday Scripting with Ruby
For Teams, Testers, and You

This PDF file contains pages extracted from Everyday Scripting with Ruby, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 1

Introduction
The shoemaker’s children are running around barefoot.

People on the outside of software development projects see them spew

out a multitude of tools that shift work from people to computers. But

the view inside a project is—all too often—different. There, we see days

filled with repetitive manual chores. At one desk, a tester is entering

test data into a database by hand. At another, a programmer is sifting

through the output from a version control system, trying to find the file

she wants. At a third, a business analyst is copying data from a report

into a spreadsheet.

Why are these people doing work that computers could do perfectly

well? It’s a matter of knowledge and skill. The tester thinks program-

ming is too hard, so he never learned. The programmer knows pro-

gramming, but none of her languages makes automating this kind of

job easy, and she doesn’t have time to do it the hard way. The analyst

once wrote a script to do a similar chore, but it broke when she tried

to adapt it to this report. Getting it working would take more time than

copying the data by hand, even if she has to copy it six times over the

next month.

Joe Asks. . .

Scripting? Programming? What’s the difference?

There isn’t one. I’m using “scripting” for this book because it
sounds less imposing and more suited to everyday chores.

CHAPTER 1. INTRODUCTION 16

This book is for all those people.

• For the person who thinks programming is too hard (our tester):

it’s not as hard as all that. Programming has a bad reputation

because computers used to be too slow. To make programs run

fast enough, programmers had to use programming languages

that made them tell the computer all kinds of fiddly details. Com-

puters are now fast enough that we can use languages that make

them figure out the fiddly little details. As a result, programming

is now much easier.

• For the person who gets bogged down when writing or changing

larger scripts (our analyst): you don’t yet have the skills to master

complexity. This book teaches them. It’s a tutorial in the modern

style of programming, one that emphasizes writing tests first (test-

driven programming), borrowing other people’s work in bits and

pieces, growing programs gradually, and constantly keeping them

clean.

Many scripts will be one-shot: write it, use it, throw it away. But

for scripts you plan to keep around, these skills will let you do

it. (In truth, many professional programmers I meet haven’t yet

learned these particular skills, so they will find this book a useful

introduction.)

• For the person who knows the wrong languages well (our pro-

grammer): languages like Java, C#, C++, and C are perfectly fine

languages—in their niche. But their niche is not writing smaller

programs quickly, especially not smaller programs that manipu-

late text and files rather than numbers and internal data struc-

tures. You need to add another language to your repertoire.

In this book, you’ll learn a language—Ruby—that is well suited to each

of these three audiences. It’s easy to learn and quick to write. While

it has the features needed for simple scripts that transform or search

text, it also has all the features needed to cope with complexity. If you’re

a tester, you’ll be pleased to know that testing is considered one of

Ruby’s niches (largely due to Watir, http://wtr.rubyforge.org/, a tool for

driving web browsers). If you’re a programmer, you may already know

that Ruby has recently become explosively popular because of its “killer

app,” Rails (a framework for building web applications, http://www.rubyonrails.org/).

Despite that, it’s more than a decade old, so it’s not just some passing

fad or unstable prototype. And everyone will be pleased with the Ruby

community, which is notably friendly.

CLICK HERE to purchase this book now.

http://wtr.rubyforge.org/
http://www.rubyonrails.org/
http://www.pragmaticprogrammer.com/titles/bmsft

HOW THE BOOK WORKS 17

1.1 How the Book Works

This is a hands-on book. Scripting is like riding a bicycle: you don’t

learn it by reading about it; you learn it by doing it. And you get better

by doing more of it. The purpose of a book, or of a coach, is to direct

your practice so that you get better faster.

Therefore, the book is organized around four separate projects that are

similar to those you might do in real life. I build the first two projects

slowly, showing and explaining all my work. You’ll learn best if you type

along with me, building the project as we go. In the third and fourth

projects, I move faster and explain only the finished result.

The practice files that come with the book contain a series of snapshots practice files

for each of the first two projects. The snippets of Ruby code in the

book identify the file they come from. You can look at the file to see

the snippet in context, to diagnose problems by comparing what you’ve

typed to what I have, or to start your own typing in the middle of a

project instead of at the beginning.

Some of you won’t create the projects along with me. I do still urge

you to work through the exercises and compare your solutions to the

solutions I give.

The Projects

The first project is an uninstaller checker. If you uninstall your com-

pany’s product, does the uninstaller remove everything it should? Does

it remove something it shouldn’t? This script will tell you. More gen-

erally, it lets you take snapshots of any part of your hard disk and

compare them.

The second project reaches out to a version control system, retrieves

change information, and summarizes it for you. It’s a typical example

of manipulating text.

The third project visits to a website, “scrapes” data out of it, and puts

that data into a comma-separated value file for use by a spreadsheet.

The final project is a “watchdog” script. It can watch long-running pro-

grams or tests and then send you an instant message or email when

they finish.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft

AN OUTLINE OF THE BOOK 18

A Special Note to Testers

You were the original audience for this book. It used to be
called Scripting for Testers, but people kept saying it would be
useful to a broader audience. Even programmers I expected to
be uninterested said things like “with only a few changes, this
book would be for me.” So I made the changes, but testers still
have a special place in my heart.

As a tester, I bet you came to this book hoping to learn how
to automate test execution: how to push inputs at a program
(probably through the user interface), collect the results, and
compare what the program produced to what it should have
produced. Even when this book was exclusively for testers, I
didn’t create any projects like that. I had two reasons:

• Automating test execution is not the most efficient way for
you to learn. I aim to teach you the practices, habits, and
Ruby features you’ll need in real life. You don’t need those
things to write one automated test or even ten, maybe
not even a hundred, so it would feel artificial, false, and
unconvincing for me to teach them in the context of a
small automated test suite. They’re better taught with
small projects of a different sort.

• Automating test execution may not be the most effective
thing for you to do. Is test execution the only task you
do by hand? Probably not. People overly focused on test
automation often miss opportunities for simple scripts
that yield outsized improvements.

1.2 An Outline of the Book

This is a book about both the features of Ruby and the craft of scripting.

Each part of the book teaches some of both. Ruby features are intro-

duced as they’re needed for that part’s project. Each part also intro-

duces new skills that build on earlier ones.

Part I, on page 32, teaches you the basics of Ruby and the basics of

scripting. If you’ve never programmed, work through it carefully. If you

already know a language, you can read it more casually, but do still

read it. Ruby is based on ideas you might not know and has features

you may not have seen before; if you skip them, you won’t be prepared

for the rest of the book.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft

SERVICE AFTER THE SALE 19

At the end of Part I, all three kinds of reader will be ready to learn

how to script better. Part II, on page 69, adds more Ruby facts, but it’s

mainly about teaching you how to write scripts in a steady, controlled

way. All programmers know the feeling of hitting that wall where they

can’t make any change without breaking something. I want to show you

how to push that wall further away.

Part III, on page 141, concentrates on accomplishing more with less

effort. It shows how to save work by finding, understanding, and includ-

ing libraries written by others. It shows you how to set up your scripts

so that your co-workers can download, install, and use them easily.

While demonstrating still more features of Ruby, this part also elabo-

rates on an important topic from Part II, “regular expressions,” a pow-

erful way of searching text.

Part IV, on page 215, covers the advanced topic of inheritance. Inheri-

tance can sometimes save even more work than libraries because some-

one else designs a framework for part of your script. You need only plug

in pieces that the framework orchestrates. Part IV shows you both how

to use complicated frameworks others create and how to make simpler

ones for yourself. You may want to get experience writing scripts of your

own before learning about frameworks.

The book ends with a glossary, solutions to exercises, and an index.

What else? Throughout the book, you’ll find chapters called “Ruby

Facts.” When I introduce a Ruby feature in the process of creating a

script, I’ll describe only the bits used in the script we’re writing. But

you’ll want to know more about such features when you write your

own scripts, so I use the fact chapters to tell you more. Skip them if

you like.

Despite those chapters, this book is not a complete reference on Ruby.

Eventually you’ll want to buy one. I heartily recommend Dave Thomas

and friends’ Programming Ruby [TH01]. It’s also from the Pragmatic

Bookshelf—indeed, Dave is one of the owners of the press. But I’m not

recommending their book because they’re my publisher. They’re my

publisher because I kept recommending their book.

1.3 Service After the Sale

Everyday Scripting with Ruby has its very own Pragmatic Programmers’

web page at http://www.pragmaticprogrammer.com/titles/bmsft/. There, you

will find updates, errata, source for all the examples and more.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft/
http://www.pragmaticprogrammer.com/titles/bmsft

SUPPLEMENTS 20

1.4 Supplements

As time and demand permit, I’ll be publishing supplements to this

book; each will be devoted to a particular topic. Please check the book’s

home page for details.

1.5 Acknowledgments

This book would not exist were it not for the prodding of Bret Pettichord.

Thank you, those who commented on drafts: Mark Axel, Tracy Beeson,

Michael Bolton, Paul Carvalho, Tom Corbett, Bob Corrick, Lisa Crispin,

Paul Czyzewski, Shailesh Dongre, Gunjan Doshi, Danny Faught, Zeljko

Filipin, Pierre Garique, George Hawthorne, Paddy Healey, Jonathan

Kohl, Bhavna Kumar, Walter Kruse, Jody Lemons, Iouri Makedonov,

Chris McMahon, Christopher Meisenzahl, Grigori Melnik, Sunil Menda,

Jack Moore, Erik Petersen, Bret Pettichord, Alan Richardson, Paul

Rogers, Tony Semana, Kevin Sheehy, Jeff Smathers, Mike Stok, Paul

Szymkowiak, Jonathan Towler, and Glenn Vanderburg.

Special thanks to Paul Carvalho for teaching me something I didn’t

know about Windows and for working through Part IV before Part III,

and to Paul Czyzewski for how thoroughly he reviewed the pages I gave

him time to review.

My editor, Daniel Steinberg, provided just the right mix of encourage-

ment, support, and pressure.

I’ll be eternally grateful to my publishers, Andy Hunt and Dave Thomas,

for not seeming to mind as their children were born, grew up, left home,

got married, and had children of their own—all during the writing of

this book.

And I’d like to thank my family. You wouldn’t believe what they’ve let

me get away with.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft

A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

Interested in improving your career? Want to make yourself more valuable to your orga-

nization, and avoid being outsourced? Then read My Job Went to India, and find out great

ways to keep yours. If you’re interested in moving your career more towards a team lead

or mangement position, then read what happens Behind Closed Doors.

My Job Went to India
The job market is shifting. Your current job may be

outsourced, perhaps to India or eastern Europe.

But you can save your job and improve your career

by following these practical and timely tips. See

how to: • treat your career as a business • build

your own brand as a software developer • develop

a structured plan for keeping your skills up to date

• market yourself to your company and rest of the

industry • keep your job!

My Job Went to India: 52 Ways to Save Your Job

Chad Fowler

(185 pages) ISBN: 0-9766940-1-8. $19.95

http://pragmaticprogrammer.com/titles/mjwti

Behind Closed Doors
You can learn to be a better manager—even a great

manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring

• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby

(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

http://pragmaticprogrammer.com/titles/mjwti
http://pragmaticprogrammer.com/titles/rdbcd

Pragmatic Methodology
Need to get software out the door? Then you want to see how to Ship It! with less fuss and

more features. And every developer can benefit from the Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress on

your project. • You want to make yourself and your

team more valuable. • You’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility

throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •

Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

Facets of Ruby Series
Sharpen your Ruby programming skills with James Edward Gray’s Best of Ruby Quiz, or

see how to integrate Ruby with all varieties of today’s technology in Enterprise Integration

with Ruby.

Best of Ruby Quiz
Sharpen your Ruby programming skills with

twenty-five challenging problems from Ruby Quiz.

Read the problems, work out a solution, and

compare your solution with answers from others.

• Learn using the most effective method available:

practice • Learn great Ruby idioms • Understand

sticky problems and the insights that lead you past

them • Gain familiarity with Ruby’s standard

library • Translate traditional algorithms to Ruby

Best of Ruby Quiz

James Edward Gray II

(304 pages) ISBN: 0-9766940-7-7. $29.95

http://pragmaticprogrammer.com/titles/fr_quiz

Enterprise Integration with Ruby
See how to use the power of Ruby to integrate all

the applications in your environment. Lean how to

• use relational databases directly, and via

mapping layers such as ActiveRecord • Harness

the power of directory services • Create, validate,

and read XML documents for easy information

interchange • Use both high- and low-level

protocols to knit applications together

Enterprise Integration with Ruby

Maik Schmidt

(360 pages) ISBN: 0-9766940-6-9. $32.95

http://pragmaticprogrammer.com/titles/fr_eir

http://pragmaticprogrammer.com/titles/fr_quiz
http://pragmaticprogrammer.com/titles/fr_eir

Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the language. The Pick-

axe: Programming Ruby: The Pragmatic Programmer’s Guide, Second Edition. This is the

definitive guide for all Ruby programmers. And you’ll need a good text editor, too. On the

Mac, we recommend TextMate.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods

• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit

testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/textmate

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Everyday Scripting’s Home Page

http://pragmaticprogrammer.com/titles/bmsft

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/bmsft.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/bmsft
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/bmsft
www.pragmaticprogrammer.com/catalog

	Contents
	Introduction
	How the Book Works
	An Outline of the Book
	Service After the Sale
	Supplements
	Acknowledgments

	Getting Started
	Download the Practice Files
	In the Beginning Was the Command Line
	Do You Need to Install Ruby?
	Installing Ruby
	Your Two Basic Tools
	Prompts, Command Lines, Prompts, and irb
	It's Time to Make Mistakes

	The Basics
	A First Script: Comparing File Inventories
	A Script in Action
	The Ruby Universe
	Objects Send and Receive Messages
	Variables Name Objects
	Comparing Arrays
	Printing to the Screen
	Making a Script
	Where Do We Stand?
	Exercises

	Ruby Facts: Arrays
	Three Improvements and a Bug Fix
	Command-line Arguments
	Ignoring Case
	Methods
	Dissecting Strings
	Fixing a Bug
	Where Do We Stand?
	Prelude to the Exercises
	Exercises

	Ruby Facts: If, Equality Testing, and Unless
	if …elsif …else
	When Are Objects Equal?
	A Shorthand Version of if
	unless
	The Question Mark Operator

	Growing a Script
	The Churn Project: Writing Scripts without Fuss
	The Project
	Building a Solution
	Where Do We Stand?
	Exercises

	Ruby Facts: Booleans
	Other Boolean Operators
	Precedence
	Every Object Is a Truth Value
	Boolean Expressions Can Select Objects

	Our Friend, the Regular Expression
	Regular Expressions Match Strings
	Dissecting Strings with Regular Expressions
	Reordering an Array
	Where Do We Stand?
	Exercises

	Ruby Facts: Regular Expressions
	Special Characters
	Grouping and Alternatives
	Taking Strings Apart
	Variables Behind the Scenes
	Regular Expression Options
	Wait, There's More…
	Exercises

	Classes Bundle Data and Methods
	Classes Define Methods
	Objects Contain Data
	Where Do We Stand?
	Exercises

	Ruby Facts: Classes (with a Side Order of Symbols)
	Defining Accessors
	Self
	Class Methods
	Class Variables and Globals
	Exercises

	Working in a World Full of People
	Scraping Web Pages with Regular Expressions
	Treating Web Pages Like Files
	Restricting Attention to Part of the Page
	Plucking Out the Title and Authors
	Hashes Store Named Data
	Taking the Trip
	Exercise Yourself

	Other Ways of Working with Web Applications
	Handling XHTML
	Driving the Browser
	Direct Access to Underlying Protocols

	Working with Comma-Separated Values
	The CSV Library
	Using Blocks for Automatic Cleanup
	More CSV Operations
	Applying It All to affinity-trip.rb
	Discovering and Understanding Classes in the Standard Library
	Replacing Code with Data

	Ruby Facts: Hashes
	Ruby Facts: Argument Lists
	Optional Arguments
	Rest Arguments
	Keyword Arguments

	Downloading Helper Scripts and Applications
	Finding Packages
	Using setup.rb
	Using RubyGems
	Understanding What You've Downloaded

	A Polished Script
	The Load Path
	Avoiding Filename Clashes
	Avoiding Class Name Clashes Using Modules
	A Script to Do the Work for You
	Working Without Stepping on Yourself
	The rakefile
	Location-independent Tests
	Exercises

	Ruby Facts: Modules
	Nested Modules
	Including Modules
	Classes Are Modules

	When Scripts Run into Problems
	Use Exceptions to Report Problems
	An Error-handling Strategy
	Your Exception-handling Options
	Methods That Use Blocks
	Exercises

	The Accomplished Scripter
	Frameworks: Scripting by Filling in Blanks
	Using the watchdog Script
	Inheritance
	Gathering User Choices

	Discovery Is Safer Than Creation
	The Story of Barker
	What Happens Where?
	Modules Instead of Superclasses

	Final Thoughts

	The Back of the Book
	Glossary
	Solutions to Exercises
	Solutions for Chapter 3
	Solutions for Chapter 5
	Solutions for Chapter 7
	Solutions for Chapter 9
	Solutions for Chapter 10
	Solutions for Chapter 11
	Solutions for Chapter 12
	Solutions for Chapter 21

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

