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Chapter 1

Introduction
The shoemaker’s children are running around barefoot.

People on the outside of software development projects see them spew

out a multitude of tools that shift work from people to computers. But

the view inside a project is—all too often—different. There, we see days

filled with repetitive manual chores. At one desk, a tester is entering

test data into a database by hand. At another, a programmer is sifting

through the output from a version control system, trying to find the file

she wants. At a third, a business analyst is copying data from a report

into a spreadsheet.

Why are these people doing work that computers could do perfectly

well? It’s a matter of knowledge and skill. The tester thinks program-

ming is too hard, so he never learned. The programmer knows pro-

gramming, but none of her languages makes automating this kind of

job easy, and she doesn’t have time to do it the hard way. The analyst

once wrote a script to do a similar chore, but it broke when she tried

to adapt it to this report. Getting it working would take more time than

copying the data by hand, even if she has to copy it six times over the

next month.

Joe Asks. . .

Scripting? Programming? What’s the difference?

There isn’t one. I’m using “scripting” for this book because it
sounds less imposing and more suited to everyday chores.
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This book is for all those people.

• For the person who thinks programming is too hard (our tester):

it’s not as hard as all that. Programming has a bad reputation

because computers used to be too slow. To make programs run

fast enough, programmers had to use programming languages

that made them tell the computer all kinds of fiddly details. Com-

puters are now fast enough that we can use languages that make

them figure out the fiddly little details. As a result, programming

is now much easier.

• For the person who gets bogged down when writing or changing

larger scripts (our analyst): you don’t yet have the skills to master

complexity. This book teaches them. It’s a tutorial in the modern

style of programming, one that emphasizes writing tests first (test-

driven programming), borrowing other people’s work in bits and

pieces, growing programs gradually, and constantly keeping them

clean.

Many scripts will be one-shot: write it, use it, throw it away. But

for scripts you plan to keep around, these skills will let you do

it. (In truth, many professional programmers I meet haven’t yet

learned these particular skills, so they will find this book a useful

introduction.)

• For the person who knows the wrong languages well (our pro-

grammer): languages like Java, C#, C++, and C are perfectly fine

languages—in their niche. But their niche is not writing smaller

programs quickly, especially not smaller programs that manipu-

late text and files rather than numbers and internal data struc-

tures. You need to add another language to your repertoire.

In this book, you’ll learn a language—Ruby—that is well suited to each

of these three audiences. It’s easy to learn and quick to write. While

it has the features needed for simple scripts that transform or search

text, it also has all the features needed to cope with complexity. If you’re

a tester, you’ll be pleased to know that testing is considered one of

Ruby’s niches (largely due to Watir, http://wtr.rubyforge.org/, a tool for

driving web browsers). If you’re a programmer, you may already know

that Ruby has recently become explosively popular because of its “killer

app,” Rails (a framework for building web applications, http://www.rubyonrails.org/).

Despite that, it’s more than a decade old, so it’s not just some passing

fad or unstable prototype. And everyone will be pleased with the Ruby

community, which is notably friendly.

CLICK HERE to purchase this book now.

http://wtr.rubyforge.org/
http://www.rubyonrails.org/
http://www.pragmaticprogrammer.com/titles/bmsft
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1.1 How the Book Works

This is a hands-on book. Scripting is like riding a bicycle: you don’t

learn it by reading about it; you learn it by doing it. And you get better

by doing more of it. The purpose of a book, or of a coach, is to direct

your practice so that you get better faster.

Therefore, the book is organized around four separate projects that are

similar to those you might do in real life. I build the first two projects

slowly, showing and explaining all my work. You’ll learn best if you type

along with me, building the project as we go. In the third and fourth

projects, I move faster and explain only the finished result.

The practice files that come with the book contain a series of snapshots practice files

for each of the first two projects. The snippets of Ruby code in the

book identify the file they come from. You can look at the file to see

the snippet in context, to diagnose problems by comparing what you’ve

typed to what I have, or to start your own typing in the middle of a

project instead of at the beginning.

Some of you won’t create the projects along with me. I do still urge

you to work through the exercises and compare your solutions to the

solutions I give.

The Projects

The first project is an uninstaller checker. If you uninstall your com-

pany’s product, does the uninstaller remove everything it should? Does

it remove something it shouldn’t? This script will tell you. More gen-

erally, it lets you take snapshots of any part of your hard disk and

compare them.

The second project reaches out to a version control system, retrieves

change information, and summarizes it for you. It’s a typical example

of manipulating text.

The third project visits to a website, “scrapes” data out of it, and puts

that data into a comma-separated value file for use by a spreadsheet.

The final project is a “watchdog” script. It can watch long-running pro-

grams or tests and then send you an instant message or email when

they finish.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft
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A Special Note to Testers

You were the original audience for this book. It used to be
called Scripting for Testers, but people kept saying it would be
useful to a broader audience. Even programmers I expected to
be uninterested said things like “with only a few changes, this
book would be for me.” So I made the changes, but testers still
have a special place in my heart.

As a tester, I bet you came to this book hoping to learn how
to automate test execution: how to push inputs at a program
(probably through the user interface), collect the results, and
compare what the program produced to what it should have
produced. Even when this book was exclusively for testers, I
didn’t create any projects like that. I had two reasons:

• Automating test execution is not the most efficient way for
you to learn. I aim to teach you the practices, habits, and
Ruby features you’ll need in real life. You don’t need those
things to write one automated test or even ten, maybe
not even a hundred, so it would feel artificial, false, and
unconvincing for me to teach them in the context of a
small automated test suite. They’re better taught with
small projects of a different sort.

• Automating test execution may not be the most effective
thing for you to do. Is test execution the only task you
do by hand? Probably not. People overly focused on test
automation often miss opportunities for simple scripts
that yield outsized improvements.

1.2 An Outline of the Book

This is a book about both the features of Ruby and the craft of scripting.

Each part of the book teaches some of both. Ruby features are intro-

duced as they’re needed for that part’s project. Each part also intro-

duces new skills that build on earlier ones.

Part I, on page 32, teaches you the basics of Ruby and the basics of

scripting. If you’ve never programmed, work through it carefully. If you

already know a language, you can read it more casually, but do still

read it. Ruby is based on ideas you might not know and has features

you may not have seen before; if you skip them, you won’t be prepared

for the rest of the book.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft
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At the end of Part I, all three kinds of reader will be ready to learn

how to script better. Part II, on page 69, adds more Ruby facts, but it’s

mainly about teaching you how to write scripts in a steady, controlled

way. All programmers know the feeling of hitting that wall where they

can’t make any change without breaking something. I want to show you

how to push that wall further away.

Part III, on page 141, concentrates on accomplishing more with less

effort. It shows how to save work by finding, understanding, and includ-

ing libraries written by others. It shows you how to set up your scripts

so that your co-workers can download, install, and use them easily.

While demonstrating still more features of Ruby, this part also elabo-

rates on an important topic from Part II, “regular expressions,” a pow-

erful way of searching text.

Part IV, on page 215, covers the advanced topic of inheritance. Inheri-

tance can sometimes save even more work than libraries because some-

one else designs a framework for part of your script. You need only plug

in pieces that the framework orchestrates. Part IV shows you both how

to use complicated frameworks others create and how to make simpler

ones for yourself. You may want to get experience writing scripts of your

own before learning about frameworks.

The book ends with a glossary, solutions to exercises, and an index.

What else? Throughout the book, you’ll find chapters called “Ruby

Facts.” When I introduce a Ruby feature in the process of creating a

script, I’ll describe only the bits used in the script we’re writing. But

you’ll want to know more about such features when you write your

own scripts, so I use the fact chapters to tell you more. Skip them if

you like.

Despite those chapters, this book is not a complete reference on Ruby.

Eventually you’ll want to buy one. I heartily recommend Dave Thomas

and friends’ Programming Ruby [TH01]. It’s also from the Pragmatic

Bookshelf—indeed, Dave is one of the owners of the press. But I’m not

recommending their book because they’re my publisher. They’re my

publisher because I kept recommending their book.

1.3 Service After the Sale

Everyday Scripting with Ruby has its very own Pragmatic Programmers’

web page at http://www.pragmaticprogrammer.com/titles/bmsft/. There, you

will find updates, errata, source for all the examples and more.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft/
http://www.pragmaticprogrammer.com/titles/bmsft
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1.4 Supplements

As time and demand permit, I’ll be publishing supplements to this

book; each will be devoted to a particular topic. Please check the book’s

home page for details.

1.5 Acknowledgments

This book would not exist were it not for the prodding of Bret Pettichord.
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Paul Czyzewski, Shailesh Dongre, Gunjan Doshi, Danny Faught, Zeljko

Filipin, Pierre Garique, George Hawthorne, Paddy Healey, Jonathan

Kohl, Bhavna Kumar, Walter Kruse, Jody Lemons, Iouri Makedonov,

Chris McMahon, Christopher Meisenzahl, Grigori Melnik, Sunil Menda,

Jack Moore, Erik Petersen, Bret Pettichord, Alan Richardson, Paul

Rogers, Tony Semana, Kevin Sheehy, Jeff Smathers, Mike Stok, Paul

Szymkowiak, Jonathan Towler, and Glenn Vanderburg.

Special thanks to Paul Carvalho for teaching me something I didn’t

know about Windows and for working through Part IV before Part III,

and to Paul Czyzewski for how thoroughly he reviewed the pages I gave

him time to review.

My editor, Daniel Steinberg, provided just the right mix of encourage-

ment, support, and pressure.

I’ll be eternally grateful to my publishers, Andy Hunt and Dave Thomas,

for not seeming to mind as their children were born, grew up, left home,

got married, and had children of their own—all during the writing of

this book.

And I’d like to thank my family. You wouldn’t believe what they’ve let

me get away with.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/bmsft
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