
Extracted from:

Python Testing with pytest
Simple, Rapid, Effective, and Scalable

This PDF file contains pages extracted from Python Testing with pytest, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Python Testing with pytest
Simple, Rapid, Effective, and Scalable

Brian Okken

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-240-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Now that you’ve seen the basics of pytest, let’s turn our attention to fixtures,
which are essential to structuring test code for almost any non-trivial software
system. Fixtures are functions that are run by pytest before (and sometimes
after) the actual test functions. The code in the fixture can do whatever you
want it to. You can use fixtures to get a data set for the tests to work on. You
can use fixtures to get a system into a known state before running a test.
Fixtures are also used to get data ready for multiple tests.

Here’s a simple fixture that returns a number:

ch3/test_fixtures.py
import pytest

@pytest.fixture()
def some_data():

"""Return answer to ultimate question."""
return 42

def test_some_data(some_data):
"""Use fixture return value in a test."""
assert some_data == 42

The @pytest.fixture() decorator is used to tell pytest that a function is a fixture.
When you include the fixture name in the parameter list of a test function,
pytest knows to run it before running the test. Fixtures can do work, and can
also return data to the test function.

The test test_some_data() has the name of the fixture, some_data, as a parameter.
pytest will see this and look for a fixture with this name. Naming is significant
in pytest. pytest will look in the module of the test for a fixture of that name.
It will also look in conftest.py files if it doesn’t find it in this file.

Before we start our exploration of fixtures (and the conftest.py file), I need to
address the fact that the term fixture has many meanings in the programming
and test community, and even in the Python community. I use “fixture,”
“fixture function,” and “fixture method” interchangeably to refer to the
@pytest.fixture() decorated functions discussed in this chapter. Fixture can also
be used to refer to the resource that is being set up by the fixture functions.
Fixture functions often set up or retrieve some data that the test can work
with. Sometimes this data is considered a fixture. For example, the Django
community often uses fixture to mean some initial data that gets loaded into
a database at the start of an application.

Regardless of other meanings, in pytest and in this book, test fixtures refer
to the mechanism pytest provides to allow the separation of “getting ready
for” and “cleaning up after” code from your test functions.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bopytest/code/ch3/test_fixtures.py
http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

pytest fixtures are one of the unique core features that make pytest stand
out above other test frameworks, and are the reason why many people switch
to and stay with pytest. However, fixtures in pytest are different than fixtures
in Django and different than the setup and teardown procedures found in
unittest and nose. There are a lot of features and nuances about fixtures.
Once you get a good mental model of how they work, they will seem easy to
you. However, you have to play with them a while to get there, so let’s get
started.

Sharing Fixtures Through conftest.py
You can put fixtures into individual test files, but to share fixtures among
multiple test files, you need to use a conftest.py file somewhere centrally located
for all of the tests. For the Tasks project, all of the fixtures will be in
tasks_proj/tests/conftest.py.

From there, the fixtures can be shared by any test. You can put fixtures in
individual test files if you want the fixture to only be used by tests in that
file. Likewise, you can have other conftest.py files in subdirectories of the top
tests directory. If you do, fixtures defined in these lower-level conftest.py files
will be available to tests in that directory and subdirectories. So far, however,
the fixtures in the Tasks project are intended to be available to any test.
Therefore, putting all of our fixtures in the conftest.py file at the test root,
tasks_proj/tests, makes the most sense.

Although conftest.py is a Python module, it should not be imported by test files.
Don’t import conftest from anywhere. The conftest.py file gets read by pytest, and
is considered a local plugin, which will make sense once we start talking about
plugins in Chapter 5, Plugins, on page ?. For now, think of tests/conftest.py as
a place where we can put fixtures used by all tests under the tests directory.

Next, let’s rework some our tests for tasks_proj to properly use fixtures.

Using Fixtures for Setup and Teardown
Most of the tests in the Tasks project will assume that the Tasks database is
already set up and running and ready. And we should clean things up at the
end if there is any cleanup needed. And maybe also disconnect from the
database. Luckily, most of this is taken care of within the tasks code with
tasks.start_tasks_db(<directory to store db>, 'tiny' or 'mongo') and tasks.stop_tasks_db(); we
just need to call them at the right time, and we need a temporary directory.

Fortunately, pytest includes a cool fixture called tmpdir that we can use for
testing and don’t have to worry about cleaning up. It’s not magic, just good

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

coding by the pytest folks. (Don’t worry; we look at tmpdir and it’s session-
scoped relative tmpdir_factory in more depth in Using tmpdir and tmpdir_factory,
on page ?.)

Given those pieces, this fixture works nicely:

ch3/a/tasks_proj/tests/conftest.py
import pytest
import tasks
from tasks import Task

@pytest.fixture()
def tasks_db(tmpdir):

"""Connect to db before tests, disconnect after."""
Setup : start db
tasks.start_tasks_db(str(tmpdir), 'tiny')

yield # this is where the testing happens

Teardown : stop db
tasks.stop_tasks_db()

The value of tmpdir isn’t a string—it’s an object that represents a directory.
However, it implements __str__, so we can use str() to get a string to pass to
start_tasks_db(). We’re still using 'tiny' for TinyDB, for now.

A fixture function runs before the tests that use it. However, if there is a yield
in the function, it stops there, passes control to the tests, and picks up on
the next line after the tests are done. Therefore, think of the code above the
yield as “setup” and the code after yield as “teardown.” The code after the yield,
the “teardown,” is guaranteed to run regardless of what happens during the
tests. We’re not returning any data with the yield in this fixture. But you can.

Let’s change one of our tasks.add() tests to use this fixture:

ch3/a/tasks_proj/tests/func/test_add.py
import pytest
import tasks
from tasks import Task

def test_add_returns_valid_id(tasks_db):
"""tasks.add(<valid task>) should return an integer."""
GIVEN an initialized tasks db
WHEN a new task is added
THEN returned task_id is of type int
new_task = Task('do something')
task_id = tasks.add(new_task)
assert isinstance(task_id, int)

• Click HERE to purchase this book now. discuss

Using Fixtures for Setup and Teardown • 7

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/func/test_add.py
http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

The main change here is that the extra fixture in the file has been removed,
and we’ve added tasks_db to the parameter list of the test. I like to structure
tests in a GIVEN/WHEN/THEN format using comments, especially when it
isn’t obvious from the code what’s going on. I think it’s helpful in this case.
Hopefully, GIVEN an initialized tasks db helps to clarify why tasks_db is used as a fix-
ture for the test.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

