
Extracted from:

Python Testing with pytest
Simple, Rapid, Effective, and Scalable

This PDF file contains pages extracted from Python Testing with pytest, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Python Testing with pytest
Simple, Rapid, Effective, and Scalable

Brian Okken

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-240-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Acknowledgments
I first need to thank Michelle, my wife and best friend. I wish you could see
the room I get to write in. In place of a desk, I have an antique square oak
dining table to give me plenty of room to spread out papers. There’s a beautiful
glass-front bookcase with my retro space toys that we’ve collected over the
years, as well as technical books, circuit boards, and juggle balls. Vintage
aluminum paper storage bins are stacked on top with places for notes, cords,
and even leftover book-promotion rocket stickers. One wall is covered in some
velvet that we purchased years ago when a fabric store was going out of
business. The fabric is to quiet the echoes when I’m recording the podcasts.
I love writing here not just because it’s wonderful and reflects my personality,
but because it’s a space that Michelle created with me and for me. She and
I have always been a team, and she has been incredibly supportive of my
crazy ideas to write a blog, start a podcast or two, and now, for the last year
or so, write this book. She has made sure I’ve had time and space for writing.
When I’m tired and don’t think I have the energy to write, she tells me to just
write for twenty minutes and see how I feel then, just like she did when she
helped me get through late nights of study in college. I really, really couldn’t
do this without her.

I also have two amazingly awesome, curious, and brilliant daughters, Gabriella
and Sophia, who are two of my biggest fans. Ella tells anyone talking about
programming that they should listen to my podcasts, and Phia sported a Test
& Code sticker on the backpack she took to second grade.

There are so many more people to thank.

My editor, Katharine Dvorak, helped me shape lots of random ideas and
topics into a cohesive progression, and is the reason why this is a book and
not a series of blog posts stapled together. I entered this project as a blogger,
and a little too attached to lots of headings, subheadings, and bullet points,
and Katie patiently guided me to be a better writer.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

Thank you to Susannah Davidson Pfalzer, Andy Hunt, and the rest of The
Pragmatic Bookshelf for taking a chance on me.

The technical reviewers have kept me honest on pytest, but also on Python
style, and are the reason why the code examples are PEP 8–compliant. Thank
you to Oliver Bestwalter, Florian Bruhin, Floris Bruynooghe, Mark Goody,
Peter Hampton, Dave Hunt, Al Krinker, Lokesh Kumar Makani, Bruno Oliveira,
Ronny Pfannschmidt, Raphael Pierzina, Luciano Ramalho, Frank Ruiz, and
Dmitry Zinoviev. Many on that list are also pytest core developers and/or
maintainers of incredible pytest plugins.

I need to call out Luciano for a special thank you. Partway through the writing
of this book, the first four chapters were sent to a handful of reviewers.
Luciano was one of them, and his review was the hardest to read. I don’t think
I followed all of his advice, but because of his feedback, I re-examined and
rewrote much of the first three chapters and changed the way I thought about
the rest of the book.

Thank you to the entire pytest-dev team for creating such a cool testing tool.
Thank you to Oliver Bestwalter, Florian Bruhin, Floris Bruynooghe, Dave
Hunt, Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Raphael Pierzina,
and many others for answering my pytest questions over the years.

Last but not least, I need to thank the people who have thanked me. Occasion-
ally people email to let me know how what I’ve written saved them time and
made their jobs easier. That’s awesome, and pleases me to no end. Thank you.

Brian Okken

September 2017

Acknowledgments • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

Preface
The use of Python is increasing not only in software development, but also
in fields such as data analysis, research science, test and measurement, and
other industries. The growth of Python in many critical fields also comes with
the desire to properly, effectively, and efficiently put software tests in place
to make sure the programs run correctly and produce the correct results. In
addition, more and more software projects are embracing continuous integra-
tion and including an automated testing phase, as release cycles are shorten-
ing and thorough manual testing of increasingly complex projects is just
infeasible. Teams need to be able to trust the tests being run by the continuous
integration servers to tell them if they can trust their software enough to
release it.

Enter pytest.

What Is pytest?
A robust Python testing tool, pytest can be used for all types and levels of
software testing. pytest can be used by development teams, QA teams, inde-
pendent testing groups, individuals practicing TDD, and open source
projects. In fact, projects all over the Internet have switched from unittest
or nose to pytest, including Mozilla and Dropbox. Why? Because pytest
offers powerful features such as ‘assert‘ rewriting, a third-party plugin
model, and a powerful yet simple fixture model that is unmatched in any
other testing framework.

pytest is a software test framework, which means pytest is a command-line
tool that automatically finds tests you’ve written, runs the tests, and reports
the results. It has a library of goodies that you can use in your tests to help
you test more effectively. It can be extended by writing plugins or installing
third-party plugins. It can be used to test Python distributions. And it
integrates easily with other tools like continuous integration and web
automation.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

Here are a few of the reasons pytest stands out above many other test
frameworks:

• Simple tests are simple to write in pytest.

• Complex tests are still simple to write.

• Tests are easy to read.

• Tests are easy to read. (So important it’s listed twice.)

• You can get started in seconds.

• You use assert to fail a test, not things like self.assertEqual() or self.assertLessThan().
Just assert.

• You can use pytest to run tests written for unittest or nose.

pytest is being actively developed and maintained by a passionate and growing
community. It’s so extensible and flexible that it will easily fit into your work
flow. And because it’s installed separately from your Python version, you can
use the same latest version of pytest on legacy Python 2 (2.6 and above) and
Python 3 (3.3 and above).

Learn pytest While Testing an Example Application
How would you like to learn pytest by testing silly examples you’d never run
across in real life? Me neither. We’re not going to do that in this book. Instead,
we’re going to write tests against an example project that I hope has many of
the same traits of applications you’ll be testing after you read this book.

The Tasks Project
The application we’ll look at is called Tasks. Tasks is a minimal task-tracking
application with a command-line user interface. It has enough in common
with many other types of applications that I hope you can easily see how the
testing concepts you learn while developing tests against Tasks are applicable
to your projects now and in the future.

While Tasks has a command-line interface (CLI), the CLI interacts with the rest
of the code through an application programming interface (API). The API is the
interface where we’ll direct most of our testing. The API interacts with a database
control layer, which interacts with a document database—either MongoDB or
TinyDB. The type of database is configured at database initialization.

Before we focus on the API, let’s look at tasks, the command-line tool that
represents the user interface for Tasks.

Preface • viii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

Here’s an example session:

$ tasks add 'do something' --owner Brian
$ tasks add 'do something else'
$ tasks list

ID owner done summary
-- ----- ---- -------
1 Brian False do something
2 False do something else

$ tasks update 2 --owner Brian
$ tasks list

ID owner done summary
-- ----- ---- -------
1 Brian False do something
2 Brian False do something else

$ tasks update 1 --done True
$ tasks list

ID owner done summary
-- ----- ---- -------
1 Brian True do something
2 Brian False do something else

$ tasks delete 1
$ tasks list

ID owner done summary
-- ----- ---- -------
2 Brian False do something else

$

This isn’t the most sophisticated task-management application, but it’s compli-
cated enough to use it to explore testing.

Test Strategy
While pytest is useful for unit testing, integration testing, system or end-to-
end testing, and functional testing, the strategy for testing the Tasks project
focuses primarily on subcutaneous functional testing. Following are some
helpful definitions:

• Unit test: A test that checks a small bit of code, like a function or a class,
in isolation of the rest of the system. I consider the tests in Chapter 1,
Getting Started with pytest, on page ?, to be unit tests run against the
Tasks data structure.

• Integration test: A test that checks a larger bit of the code, maybe several
classes, or a subsystem. Mostly it’s a label used for some test larger than
a unit test, but smaller than a system test.

• System test (end-to-end): A test that checks all of the system under test
in an environment as close to the end-user environment as possible.

• Click HERE to purchase this book now. discuss

Learn pytest While Testing an Example Application • ix

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

• Functional test: A test that checks a single bit of functionality of a system.
A test that checks how well we add or delete or update a task item in
Tasks is a functional test.

• Subcutaneous test: A test that doesn’t run against the final end-user
interface, but against an interface just below the surface. Since most of
the tests in this book test against the API layer—not the CLI—they qualify
as subcutaneous tests.

How This Book Is Organized
In Chapter 1, Getting Started with pytest, on page ?, you’ll install pytest and
get it ready to use. You’ll then take one piece of the Tasks project—the data
structure representing a single task (a namedtuple called Task)—and use it to
test examples. You’ll learn how to run pytest with a handful of test files. You’ll
look at many of the popular and hugely useful command-line options for
pytest, such as being able to re-run test failures, stop execution after the first
failure, control the stack trace and test run verbosity, and much more.

In Chapter 2, Writing Test Functions, on page ?, you’ll install Tasks locally
using pip and look at how to structure tests within a Python project. You’ll do
this so that you can get to writing tests against a real application. All the
examples in this chapter run tests against the installed application, including
writing to the database. The actual test functions are the focus of this chapter,
and you’ll learn how to use assert effectively in your tests. You’ll also learn
about markers, a feature that allows you to mark many tests to be run at one
time, mark tests to be skipped, or tell pytest that we already know some tests
will fail. And I’ll cover how to run just some of the tests, not just with markers,
but by structuring our test code into directories, modules, and classes, and
how to run these subsets of tests.

Not all of your test code goes into test functions. In Chapter 3, pytest Fixtures,
on page ?, you’ll learn how to put test data into test fixtures, as well as set
up and tear down code. Setting up system state (or subsystem or unit state)
is an important part of software testing. You’ll explore this aspect of pytest
fixtures to help get the Tasks project’s database initialized and prefilled with
test data for some tests. Fixtures are an incredibly powerful part of pytest,
and you’ll learn how to use them effectively to further reduce test code
duplication and help make your test code incredibly readable and maintain-
able. pytest fixtures are also parametrizable, similar to test functions, and
you’ll use this feature to be able to run all of your tests against both TinyDB
and MongoDB, the database back ends supported by Tasks.

Preface • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

In Chapter 4, Builtin Fixtures, on page ?, you will look at some builtin fix-
tures provided out-of-the-box by pytest. You will learn how pytest builtin
fixtures can keep track of temporary directories and files for you, help you
test output from your code under test, use monkey patches, check for
warnings, and more.

In Chapter 5, Plugins, on page ?, you’ll learn how to add command-line
options to pytest, alter the pytest output, and share pytest customizations,
including fixtures, with others through writing, packaging, and distributing
your own plugins. The plugin we develop in this chapter is used to make the
test failures we see while testing Tasks just a little bit nicer. You’ll also look
at how to properly test your test plugins. How’s that for meta? And just in
case you’re not inspired enough by this chapter to write some plugins of your
own, I’ve hand-picked a bunch of great plugins to show off what’s possible
in Appendix 3, Plugin Sampler Pack, on page ?.

Speaking of customization, in Chapter 6, Configuration, on page ?, you’ll
learn how you can customize how pytest runs by default for your project with
configuration files. With a pytest.ini file, you can do things like store command-
line options so you don’t have to type them all the time, tell pytest to not look
into certain directories for test files, specify a minimum pytest version your
tests are written for, and more. These configuration elements can be put in
tox.ini or setup.cfg as well.

In the final chapter, Chapter 7, Using pytest with Other Tools, on page ?,
you’ll look at how you can take the already powerful pytest and supercharge
your testing with complementary tools. You’ll run the Tasks project on multiple
versions of Python with tox. You’ll test the Tasks CLI while not having to run
the rest of the system with mock. You’ll use coverage.py to see if any of the
Tasks project source code isn’t being tested. You’ll use Jenkins to run test
suites and display results over time. And finally, you’ll see how pytest can be
used to run unittest tests, as well as share pytest style fixtures with unittest-
based tests.

What You Need to Know
Python

You don’t need to know a lot of Python. The examples don’t do anything
super weird or fancy.

pip
You should use pip to install pytest and pytest plugins. If you want a
refresher on pip, check out Appendix 2, pip, on page ?.

• Click HERE to purchase this book now. discuss

What You Need to Know • xi

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

A command line
I wrote this book and captured the example output using bash on a Mac
laptop. However, the only commands I use in bash are cd to go to a specific
directory, and pytest, of course. Since cd exists in Windows cmd.exe and all
unix shells that I know of, all examples should be runnable on whatever
terminal-like application you choose to use.

That’s it, really. You don’t need to be a programming expert to start writing
automated software tests with pytest.

Example Code and Online Resources
The examples in this book were written using Python 3.6 and pytest 3.2.
pytest 3.2 supports Python 2.6, 2.7, and Python 3.3+.

The source code for the Tasks project, as well as for all of the tests shown in
this book, is available through a link1 on the book’s web page at pragprog.com.2

You don’t need to download the source code to understand the test code; the
test code is presented in usable form in the examples. But to follow along
with the Tasks project, or to adapt the testing examples to test your own
project (more power to you!), you must go to the book’s web page to download
the Tasks project. Also available on the book’s web page is a link to post
errata3 and a discussion forum.4

I’ve been programming for over twenty-five years, and nothing has made me
love writing test code as much as pytest. I hope you learn a lot from this book,
and I hope that you’ll end up loving test code as much as I do.

1. https://pragprog.com/titles/bopytest/source_code
2. https://pragprog.com/titles/bopytest
3. https://pragprog.com/titles/bopytest/errata
4. https://forums.pragprog.com/forums/438

Preface • xii

• Click HERE to purchase this book now. discuss

https://pragprog.com/titles/bopytest/source_code
https://pragprog.com/titles/bopytest
https://pragprog.com/titles/bopytest/errata
https://forums.pragprog.com/forums/438
http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

