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Preface
The use of Python is increasing not only in software development, but also
in fields such as data analysis, research science, test and measurement, and
other industries. The growth of Python in many critical fields also comes with
the desire to properly, effectively, and efficiently put software tests in place
to make sure the programs run correctly and produce the correct results. In
addition, more and more software projects are embracing continuous integra-
tion and including an automated testing phase, as release cycles are shorten-
ing and thorough manual testing of increasingly complex projects is just
infeasible. Teams need to be able to trust the tests being run by the continuous
integration servers to tell them if they can trust their software enough to
release it.

Enter pytest.

What Is pytest?
A robust Python testing tool, pytest can be used for all types and levels of
software testing. pytest can be used by development teams, QA teams, inde-
pendent testing groups, individuals practicing TDD, and open source
projects. In fact, projects all over the Internet have switched from unittest
or nose to pytest, including Mozilla and Dropbox. Why? Because pytest
offers powerful features such as ‘assert‘ rewriting, a third-party plugin
model, and a powerful yet simple fixture model that is unmatched in any
other testing framework.

pytest is a software test framework, which means pytest is a command-line
tool that automatically finds tests you’ve written, runs the tests, and reports
the results. It has a library of goodies that you can use in your tests to help
you test more effectively. It can be extended by writing plugins or installing
third-party plugins. It can be used to test Python distributions. And it
integrates easily with other tools like continuous integration and web
automation.
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Here are a few of the reasons pytest stands out above many other test
frameworks:

• Simple tests are simple to write in pytest.

• Complex tests are still simple to write.

• Tests are easy to read.

• Tests are easy to read. (So important it’s listed twice.)

• You can get started in seconds.

• You use assert to fail a test, not things like self.assertEqual() or self.assertLessThan().
Just assert.

• You can use pytest to run tests written for unittest or nose.

pytest is being actively developed and maintained by a passionate and growing
community. It’s so extensible and flexible that it will easily fit into your work
flow. And because it’s installed separately from your Python version, you can
use the same latest version of pytest on legacy Python 2 (2.6 and above) and
Python 3 (3.3 and above).

Learn pytest While Testing an Example Application
How would you like to learn pytest by testing silly examples you’d never run
across in real life? Me neither. We’re not going to do that in this book. Instead,
we’re going to write tests against an example project that I hope has many of
the same traits of applications you’ll be testing after you read this book.

The Tasks Project
The application we’ll look at is called Tasks. Tasks is a minimal task-tracking
application with a command-line user interface. It has enough in common
with many other types of applications that I hope you can easily see how the
testing concepts you learn while developing tests against Tasks are applicable
to your projects now and in the future.

While Tasks has a command-line interface (CLI), the CLI interacts with the rest
of the code through an application programming interface (API). The API is the
interface where we’ll direct most of our testing. The API interacts with a database
control layer, which interacts with a document database—either MongoDB or
TinyDB. The type of database is configured at database initialization.

Before we focus on the API, let’s look at tasks, the command-line tool that
represents the user interface for Tasks.
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Here’s an example session:

$ tasks add 'do something' --owner Brian
$ tasks add 'do something else'
$ tasks list

ID owner done summary
-- ----- ---- -------
1 Brian False do something
2 False do something else

$ tasks update 2 --owner Brian
$ tasks list

ID owner done summary
-- ----- ---- -------
1 Brian False do something
2 Brian False do something else

$ tasks update 1 --done True
$ tasks list

ID owner done summary
-- ----- ---- -------
1 Brian True do something
2 Brian False do something else

$ tasks delete 1
$ tasks list

ID owner done summary
-- ----- ---- -------
2 Brian False do something else

$

This isn’t the most sophisticated task-management application, but it’s compli-
cated enough to use it to explore testing.

Test Strategy
While pytest is useful for unit testing, integration testing, system or end-to-
end testing, and functional testing, the strategy for testing the Tasks project
focuses primarily on subcutaneous functional testing. Following are some
helpful definitions:

• Unit test: A test that checks a small bit of code, like a function or a class,
in isolation of the rest of the system. I consider the tests in Chapter 1,
Getting Started with pytest, on page ?, to be unit tests run against the
Tasks data structure.

• Integration test: A test that checks a larger bit of the code, maybe several
classes, or a subsystem. Mostly it’s a label used for some test larger than
a unit test, but smaller than a system test.

• System test (end-to-end): A test that checks all of the system under test
in an environment as close to the end-user environment as possible.
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• Functional test: A test that checks a single bit of functionality of a system.
A test that checks how well we add or delete or update a task item in
Tasks is a functional test.

• Subcutaneous test: A test that doesn’t run against the final end-user
interface, but against an interface just below the surface. Since most of
the tests in this book test against the API layer—not the CLI—they qualify
as subcutaneous tests.

How This Book Is Organized
In Chapter 1, Getting Started with pytest, on page ?, you’ll install pytest and
get it ready to use. You’ll then take one piece of the Tasks project—the data
structure representing a single task (a namedtuple called Task)—and use it to
test examples. You’ll learn how to run pytest with a handful of test files. You’ll
look at many of the popular and hugely useful command-line options for
pytest, such as being able to re-run test failures, stop execution after the first
failure, control the stack trace and test run verbosity, and much more.

In Chapter 2, Writing Test Functions, on page ?, you’ll install Tasks locally
using pip and look at how to structure tests within a Python project. You’ll do
this so that you can get to writing tests against a real application. All the
examples in this chapter run tests against the installed application, including
writing to the database. The actual test functions are the focus of this chapter,
and you’ll learn how to use assert effectively in your tests. You’ll also learn
about markers, a feature that allows you to mark many tests to be run at one
time, mark tests to be skipped, or tell pytest that we already know some tests
will fail. And I’ll cover how to run just some of the tests, not just with markers,
but by structuring our test code into directories, modules, and classes, and
how to run these subsets of tests.

Not all of your test code goes into test functions. In Chapter 3, pytest Fixtures,
on page ?, you’ll learn how to put test data into test fixtures, as well as set
up and tear down code. Setting up system state (or subsystem or unit state)
is an important part of software testing. You’ll explore this aspect of pytest
fixtures to help get the Tasks project’s database initialized and prefilled with
test data for some tests. Fixtures are an incredibly powerful part of pytest,
and you’ll learn how to use them effectively to further reduce test code
duplication and help make your test code incredibly readable and maintain-
able. pytest fixtures are also parametrizable, similar to test functions, and
you’ll use this feature to be able to run all of your tests against both TinyDB
and MongoDB, the database back ends supported by Tasks.
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In Chapter 4, Builtin Fixtures, on page ?, you will look at some builtin fix-
tures provided out-of-the-box by pytest. You will learn how pytest builtin
fixtures can keep track of temporary directories and files for you, help you
test output from your code under test, use monkey patches, check for
warnings, and more.

In Chapter 5, Plugins, on page ?, you’ll learn how to add command-line
options to pytest, alter the pytest output, and share pytest customizations,
including fixtures, with others through writing, packaging, and distributing
your own plugins. The plugin we develop in this chapter is used to make the
test failures we see while testing Tasks just a little bit nicer. You’ll also look
at how to properly test your test plugins. How’s that for meta? And just in
case you’re not inspired enough by this chapter to write some plugins of your
own, I’ve hand-picked a bunch of great plugins to show off what’s possible
in Appendix 3, Plugin Sampler Pack, on page ?.

Speaking of customization, in Chapter 6, Configuration, on page ?, you’ll
learn how you can customize how pytest runs by default for your project with
configuration files. With a pytest.ini file, you can do things like store command-
line options so you don’t have to type them all the time, tell pytest to not look
into certain directories for test files, specify a minimum pytest version your
tests are written for, and more. These configuration elements can be put in
tox.ini or setup.cfg as well.

In the final chapter, Chapter 7, Using pytest with Other Tools, on page ?,
you’ll look at how you can take the already powerful pytest and supercharge
your testing with complementary tools. You’ll run the Tasks project on multiple
versions of Python with tox. You’ll test the Tasks CLI while not having to run
the rest of the system with mock. You’ll use coverage.py to see if any of the
Tasks project source code isn’t being tested. You’ll use Jenkins to run test
suites and display results over time. And finally, you’ll see how pytest can be
used to run unittest tests, as well as share pytest style fixtures with unittest-
based tests.

What You Need to Know
Python

You don’t need to know a lot of Python. The examples don’t do anything
super weird or fancy.

pip
You should use pip to install pytest and pytest plugins. If you want a
refresher on pip, check out Appendix 2, pip, on page ?.

• Click  HERE  to purchase this book now.  discuss

What You Need to Know • xi

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest


A command line
I wrote this book and captured the example output using bash on a Mac
laptop. However, the only commands I use in bash are cd to go to a specific
directory, and pytest, of course. Since cd exists in Windows cmd.exe and all
unix shells that I know of, all examples should be runnable on whatever
terminal-like application you choose to use.

That’s it, really. You don’t need to be a programming expert to start writing
automated software tests with pytest.

Example Code and Online Resources
The examples in this book were written using Python 3.6 and pytest 3.2.
pytest 3.2 supports Python 2.6, 2.7, and Python 3.3+.

The source code for the Tasks project, as well as for all of the tests shown in
this book, is available through a link1 on the book’s web page at pragprog.com.2

You don’t need to download the source code to understand the test code; the
test code is presented in usable form in the examples. But to follow along
with the Tasks project, or to adapt the testing examples to test your own
project (more power to you!), you must go to the book’s web page to download
the Tasks project. Also available on the book’s web page is a link to post
errata3 and a discussion forum.4

I’ve been programming for over twenty-five years, and nothing has made me
love writing test code as much as pytest. I hope you learn a lot from this book,
and I hope that you’ll end up loving test code as much as I do.

1. https://pragprog.com/titles/bopytest/source_code
2. https://pragprog.com/titles/bopytest
3. https://pragprog.com/titles/bopytest/errata
4. https://forums.pragprog.com/forums/438
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