
Extracted from:

Python Testing with pytest
Simple, Rapid, Effective, and Scalable

This PDF file contains pages extracted from Python Testing with pytest, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Python Testing with pytest
Simple, Rapid, Effective, and Scalable

Brian Okken

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-240-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Running pytest
$ pytest --help
usage: pytest [options] [file_or_dir] [file_or_dir] [...]

...

Given no arguments, pytest looks at your current directory and all subdirec-
tories for test files and runs the test code it finds. If you give pytest a filename,
a directory name, or a list of those, it looks there instead of the current
directory. Each directory listed on the command line is recursively traversed
to look for test code.

For example, let’s create a subdirectory called tasks, and start with this test file:

ch1/tasks/test_three.py
"""Test the Task data type."""

from collections import namedtuple

Task = namedtuple('Task', ['summary', 'owner', 'done', 'id'])
Task.__new__.__defaults__ = (None, None, False, None)

def test_defaults():
"""Using no parameters should invoke defaults."""
t1 = Task()
t2 = Task(None, None, False, None)
assert t1 == t2

def test_member_access():
"""Check .field functionality of namedtuple."""
t = Task('buy milk', 'brian')
assert t.summary == 'buy milk'
assert t.owner == 'brian'
assert (t.done, t.id) == (False, None)

You can use __new__.__defaults__ to create Task objects without having to specify
all the fields. The test_defaults() test is there to demonstrate and validate how
the defaults work.

The test_member_access() test is to demonstrate how to access members by name
and not by index, which is one of the main reasons to use namedtuples.

Let’s put a couple more tests into a second file to demonstrate the _asdict() and
_replace() functionality:

ch1/tasks/test_four.py
"""Test the Task data type."""

from collections import namedtuple

Task = namedtuple('Task', ['summary', 'owner', 'done', 'id'])

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bopytest/code/ch1/tasks/test_three.py
http://media.pragprog.com/titles/bopytest/code/ch1/tasks/test_four.py
http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

Task.__new__.__defaults__ = (None, None, False, None)

def test_asdict():
"""_asdict() should return a dictionary."""
t_task = Task('do something', 'okken', True, 21)
t_dict = t_task._asdict()
expected = {'summary': 'do something',

'owner': 'okken',
'done': True,
'id': 21}

assert t_dict == expected

def test_replace():
"""replace() should change passed in fields."""
t_before = Task('finish book', 'brian', False)
t_after = t_before._replace(id=10, done=True)
t_expected = Task('finish book', 'brian', True, 10)
assert t_after == t_expected

To run pytest, you have the option to specify files and directories. If you don’t
specify any files or directories, pytest will look for tests in the current working
directory and subdirectories. It looks for files starting with test_ or ending with
_test. From the ch1 directory, if you run pytest with no commands, you’ll run
four files’ worth of tests:

$ cd /path/to/code/ch1
$ pytest
===================== test session starts ======================
collected 6 items

test_one.py .
test_two.py F
tasks/test_four.py ..
tasks/test_three.py ..

=========================== FAILURES ===========================
_________________________ test_failing _________________________

def test_failing():
> assert (1, 2, 3) == (3, 2, 1)
E assert (1, 2, 3) == (3, 2, 1)
E At index 0 diff: 1 != 3
E Use -v to get the full diff

test_two.py:2: AssertionError
============== 1 failed, 5 passed in 0.08 seconds ==============

To get just our new task tests to run, you can give pytest all the filenames
you want run, or the directory, or call pytest from the directory where our
tests are:

$ pytest tasks/test_three.py tasks/test_four.py

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

===================== test session starts ======================
collected 4 items

tasks/test_three.py ..
tasks/test_four.py ..

=================== 4 passed in 0.02 seconds ===================
$ pytest tasks
===================== test session starts ======================
collected 4 items

tasks/test_four.py ..
tasks/test_three.py ..

=================== 4 passed in 0.03 seconds ===================
$ cd /path/to/code/ch1/tasks
$ pytest
===================== test session starts ======================
collected 4 items

test_four.py ..
test_three.py ..

=================== 4 passed in 0.02 seconds ===================

The part of pytest execution where pytest goes off and finds which tests to
run is called test discovery. pytest was able to find all the tests we wanted it
to run because we named them according to the pytest naming conventions.
Here’s a brief overview of the naming conventions to keep your test code dis-
coverable by pytest:

• Test files should be named test_<something>.py or <something>_test.py.
• Test methods and functions should be named test_<something>.
• Test classes should be named Test<Something>.

Since our test files and functions start with test_, we’re good. There are ways
to alter these discovery rules if you have a bunch of tests named differently.
I’ll cover that in Chapter 6, Configuration, on page ?.

Let’s take a closer look at the output of running just one file:

$ cd /path/to/code/ch1/tasks
$ pytest test_three.py
================= test session starts ==================
platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.34, pluggy-0.4.0
rootdir: /path/to/code/ch1/tasks, inifile:
collected 2 items

test_three.py ..

=============== 2 passed in 0.01 seconds ===============

The output tells us quite a bit.

• Click HERE to purchase this book now. discuss

Running pytest • 3

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

===== test session starts ====
pytest provides a nice delimiter for the start of the test session. A session
is one invocation of pytest, including all of the tests run on possibly
multiple directories. This definition of session becomes important when
I talk about session scope in relation to pytest fixtures in Specifying Fixture
Scope, on page ?.

platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.34, pluggy-0.4.0
platform darwin is a Mac thing. This is different on a Windows machine. The
Python and pytest versions are listed, as well as the packages pytest
depends on. Both py and pluggy are packages developed by the pytest team
to help with the implementation of pytest.

rootdir: /path/to/code/ch1/tasks, inifile:
The rootdir is the topmost common directory to all of the directories being
searched for test code. The inifile (blank here) lists the configuration file being
used. Configuration files could be pytest.ini, tox.ini, or setup.cfg. You’ll look at
configuration files in more detail in Chapter 6, Configuration, on page ?.

collected 2 items
These are the two test functions in the file.

test_three.py ..
The test_three.py shows the file being tested. There is one line for each test
file. The two dots denote that the tests passed—one dot for each test
function or method. Dots are only for passing tests. Failures, errors, skips,
xfails, and xpasses are denoted with F, E, s, x, and X, respectively. If you
want to see more than dots for passing tests, use the -v or --verbose option.

== 2 passed in 0.01 seconds ==
This refers to the number of passing tests and how long the entire test
session took. If non-passing tests were present, the number of each cate-
gory would be listed here as well.

The outcome of a test is the primary way the person running a test or looking
at the results understands what happened in the test run. In pytest, test
functions may have several different outcomes, not just pass or fail.

Here are the possible outcomes of a test function:

• PASSED (.): The test ran successfully.

• FAILED (F): The test did not run successfully (or XPASS + strict).

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

• SKIPPED (s): The test was skipped. You can tell pytest to skip a test by
using either the @pytest.mark.skip() or pytest.mark.skipif() decorators, discussed
in Skipping Tests, on page ?.

• xfail (x): The test was not supposed to pass, ran, and failed. You can tell
pytest that a test is expected to fail by using the @pytest.mark.xfail() decorator,
discussed in Marking Tests as Expecting to Fail, on page ?.

• XPASS (X): The test was not supposed to pass, ran, and passed.

• ERROR (E): An exception happened outside of the test function, in either
a fixture, discussed in Chapter 3, pytest Fixtures, on page ?, or in a hook
function, discussed in Chapter 5, Plugins, on page ?.

• Click HERE to purchase this book now. discuss

Running pytest • 5

http://pragprog.com/titles/bopytest
http://forums.pragprog.com/forums/bopytest

