
Extracted from:

Python Testing with pytest,
Second Edition

Simple, Rapid, Effective, and Scalable

This PDF file contains pages extracted from Python Testing with pytest, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Python Testing with pytest,
Second Edition

Simple, Rapid, Effective, and Scalable

Brian Okken

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-860-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 3

pytest Fixtures
Now that you’ve used pytest to write and run test functions, let’s turn our
attention to test helper functions called fixtures, which are essential to
structuring test code for almost any non-trivial software system. Fixtures are
functions that are run by pytest before (and sometimes after) the actual test
functions. The code in the fixture can do whatever you want it to. You can
use fixtures to get a data set for the tests to work on. You can use fixtures to
get a system into a known state before running a test. Fixtures are also used
to get data ready for multiple tests.

In this chapter, you’ll learn how to create fixtures and learn how to work with
them. You’ll learn how to structure fixtures to hold both setup and teardown
code. You’ll use scope to allow fixtures to run once over many tests, and learn
how tests can use multiple fixtures. You’ll also learn how to trace code execu-
tion through fixtures and test code.

But first, before you learn the ins and outs of fixtures and use them to help
test Cards, let’s look at a small example fixture and how fixtures and test
functions are connected.

Getting Started with Fixtures
Here’s a simple fixture that returns a number:

ch3/test_fixtures.py
import pytest

@pytest.fixture()
def some_data():

"""Return answer to ultimate question."""
return 42

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bopytest2/code/ch3/test_fixtures.py
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

def test_some_data(some_data):
"""Use fixture return value in a test."""
assert some_data == 42

The @pytest.fixture() decorator is used to tell pytest that a function is a fixture.
When you include the fixture name in the parameter list of a test function,
pytest knows to run it before running the test. Fixtures can do work, and can
also return data to the test function.

You don’t need to have a complete understanding of Python decorators to use
the decorators included with pytest. pytest uses decorators to add function-
ality and features to other functions. In this case, pytest.fixture() is decorating
the some_data() function. The test, test_some_data(), has the name of the fixture,
some_data, as a parameter. pytest will see this and look for a fixture with this
name.

The term fixture has many meanings in the programming and test community,
and even in the Python community. I use “fixture,” “fixture function,” and
“fixture method” interchangeably to refer to the @pytest.fixture() decorated
functions discussed in this chapter. Fixture can also be used to refer to the
resource that is being set up by the fixture functions. Fixture functions often
set up or retrieve some data that the test can work with. Sometimes this data
is considered a fixture. For example, the Django community often uses fixture
to mean some initial data that gets loaded into a database at the start of an
application.

Regardless of other meanings, in pytest and in this book, test fixtures refer
to the mechanism pytest provides to allow the separation of “getting ready
for” and “cleaning up after” code from your test functions.

pytest treats exceptions differently during fixtures compared to during a test
function. An exception (or assert failure or call to pytest.fail()) that happens
during the test code proper results in a “Fail” result. However, during a fixture,
the test function is reported as “Error.” This distinction is helpful when
debugging why a test didn’t pass. If a test results in “Fail,” the failure is
somewhere in the test function (or something the function called). If a test
results in “Error,” the failure is somewhere in a fixture.

pytest fixtures are one of the unique core features that make pytest stand
out above other test frameworks, and are the reason why many people
switch to and stay with pytest. There are a lot of features and nuances
about fixtures. Once you get a good mental model of how they work, they
will seem easy to you. However, you have to play with them a while to get
there, so let’s do that next.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

Using Fixtures for Setup and Teardown
Fixtures are going to help us a lot with testing the Cards application. The
Cards application is designed with an API that does most of the work and
logic, and a thin CLI. Especially because the user interface is rather thin on
logic, focusing most of our testing on the API will give us the most bang for
our buck. The Cards application also uses a database, and dealing with the
database is where fixtures are going to help out a lot.

Make Sure Cards Is Installed

Examples in this chapter require having the Cards application
installed. If you haven’t already installed the Cards application,
be sure to install it with cd code; pip install ./cards_proj. See Installing
the Sample Application, on page ? for more information.

Let’s start by writing some tests for the count() method that supports the count
functionality. As a reminder, let’s play with count on the command line:

$ cards count
0
$ cards add first item
$ cards add second item
$ cards count
2

An initial test, checking that the count starts at zero, might look like this:

ch3/test_count_initial.py
from pathlib import Path
from tempfile import TemporaryDirectory
import cards

def test_empty():
with TemporaryDirectory() as db_dir:

db_path = Path(db_dir)
db = cards.CardsDB(db_path)

count = db.count()
db.close()

assert count == 0

In order to call count(), we need a database object, which we get by calling
cards.CardsDB(db_path). The cards.CardsDB() function is a constructor; it returns a
CardsDB object. The db_path parameter needs to be a pathlib.Path object that points
to the database directory. The pathlib module was introduced in Python 3.4

• Click HERE to purchase this book now. discuss

Using Fixtures for Setup and Teardown • 7

http://media.pragprog.com/titles/bopytest2/code/ch3/test_count_initial.py
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

and pathlib.Path1 objects are the standard way to represent file system paths.
For testing, a temporary directory works, which we get from tempfile.Temporary-
Directory(). There are other ways to get all of this done, but this works for now.

This test function really isn’t too painful. It’s only a few lines of code. Let’s
look at the problems anyway. There is code to get the database set up before
we call count() that isn’t really what we want to test. There is the call to db.close()
before the assert statement. It would seem better to place this at the end of
the function, but we have to call it before assert, because if the assert statement
fails, it won’t be called.

These problems are resolved with a pytest fixture:

ch3/test_count.py
import pytest

@pytest.fixture()
def cards_db():

with TemporaryDirectory() as db_dir:
db_path = Path(db_dir)
db = cards.CardsDB(db_path)
yield db
db.close()

def test_empty(cards_db):
assert cards_db.count() == 0

Right off the bat we can see that the test function itself is way easier to read,
as we’ve pushed all the database initialization into a fixture called cards_db.

The cards_db fixture is “setting up” for the test by getting the database ready.
It’s then yield-ing the database object. That’s when the test gets to run. And
then after the test runs, it closes the database.

Fixture functions run before the tests that use them. If there is a yield in the
function, it stops there, passes control to the tests, and picks up on the next
line after the tests are done. The code above the yield is “setup” and the code
after yield is “teardown.” The code after the yield, the teardown, is guaranteed
to run regardless of what happens during the tests.

In our example, the yield happens within a context manager with block for the
temporary directory. That directory stays around while the fixture is in use
and the tests run. After the test is done, control passes back to the fixture,
the db.close() can run, and then the with block can complete and clean up the
directory.

1. https://docs.python.org/3/library/pathlib.html#basic-use

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bopytest2/code/ch3/test_count.py
https://docs.python.org/3/library/pathlib.html#basic-use
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

Remember: pytest looks at the specific name of the arguments to our test and
then looks for a fixture with the same name. We never call fixture functions
directly. pytest does that for us.

You can use fixtures in multiple tests. Here’s another one:

ch3/test_count.py
def test_two(cards_db):

cards_db.add_card(cards.Card("first"))
cards_db.add_card(cards.Card("second"))
assert cards_db.count() == 2

test_two() uses the same cards_db fixture. This time, we take the empty database
and add two cards before checking the count. We can now use cards_db for any
test that needs a configured database to run. The individual tests, such as
test_empty() and test_two() can be kept smaller and focus on what we are testing,
and not the setup and teardown bits.

The fixture and test function are separate functions. Carefully naming your
fixtures to reflect the work being done in the fixture or the object returned
from the fixture, or both, will help with readability.

While writing and debugging test functions, it’s frequently helpful to visualize
when the setup and teardown portions of fixtures run with respect the tests
using them. The next section describes --setup-show to help with this visualization.

• Click HERE to purchase this book now. discuss

Using Fixtures for Setup and Teardown • 9

http://media.pragprog.com/titles/bopytest2/code/ch3/test_count.py
http://pragprog.com/titles/bopytest2
http://forums.pragprog.com/forums/bopytest2

