
Extracted from:

Seven Languages in Seven
Weeks

A Pragmatic Guide to Learning Programming Languages

This PDF file contains pages extracted from Seven Languages in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven Languages in Seven
Weeks

A Pragmatic Guide to Learning Programming Languages

Bruce A. Tate

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jackie Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
Steve Peter (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-59-3
Printed on acid-free paper.
Book version: P5.0—March 2012

http://pragprog.com

CHAPTER 1

Introduction
People learn spoken languages for different reasons. You learned your first
language to live. It gave you the tools to get through your everyday life. If
you learned a second language, the reasons could be very different. Some-
times, you might have to learn a second language to further your career or
adapt to a changing environment. But sometimes you decide to conquer a
new language not because you have to but because you want to learn. A
second language can help you encounter new worlds. You may even seek
enlightenment, knowing every new language can shape the way you think.

So it is with programming languages. In this book, I will introduce you to
seven different languages. My goal is not to make a motherly demand like
your morning spoonful of cod liver oil. I want to guide you through a journey
that will enlighten you and change the way you look at programming. I won’t
make you an expert, but I’ll teach you more than “Hello, World.”

1.1 Method to the Madness

Most of the time, when I’m learning a new programming language or
framework, I’ll look for a quick interactive tutorial. My goal is to experience
the language in a controlled environment. If I want, I can go off script and
explore, but I’m basically looking for a quick jolt of caffeine, a snapshot of
syntactic sugar, and core concepts.

But usually, the experience is not fulfilling. If I want to get the true flavor
of a language that is more than a subtle extension of one I already know, a
short tutorial is never going to work. I need a deep, fast dive. This book will
give you such an experience not once but seven times. You’ll find answers
to the following questions:

• What is the typing model? Typing is strong (Java) or weak (C), static
(Java) or dynamic (Ruby). The languages in this book lean on the strong

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

typing end of the spectrum, but you’ll encounter a broad mix of static
and dynamic. You will find how the trade-offs impact a developer. The
typing model will shape the way you attack a problem and control the
way the language works. Every language in this book has its own typing
idiosyncrasies.

• What is the programming model? Is it object-oriented (OO), functional,
procedural, or some type of hybrid? This book has languages spanning
four different programming models and, sometimes, combinations of
more than one. You will find a logic-based programming language
(Prolog), two languages with full support for object-oriented concepts
(Ruby, Scala), four languages that are functional in nature (Scala, Erlang,
Clojure, Haskell), and one prototype language (Io). Several of the lan-
guages are multiparadigm languages, like Scala. Clojure’s multimethods
will even let you implement your own paradigm. Learning new program-
ming paradigms is one of the most important concepts in this book.

• How will you interact with it? Languages are compiled or interpreted,
and some have virtual machines while others don’t. In this book, I’ll
begin to explore with an interactive shell, if there is one. I will move on
to files when it’s time to attack bigger projects. We won’t attack large
enough projects to fully dive into packaging models.

• What are the decision constructs and core data structures? You’d be
surprised how many languages can make decisions with things other
than variations of ifs and whiles. You’ll see pattern matching in Erlang
and unification in Prolog. Collections play a vital role in just about any
language. In languages such as Smalltalk and Lisp, the collections are
defining characteristics of the language. In others, like C++ and Java,
collections are all over the place, defining the user’s experience by their
absence and lack of cohesion. Either way, you’ll need a sound under-
standing of the collections.

• What are the core features that make the language unique? Some of the
languages will support advanced features for concurrent programming.
Others provide unique high-level constructs such as Clojure’s macros
or Io’s message interpretation. Others will give you a supercharged vir-
tual machine, like Erlang’s BEAM. Because of it, Erlang will let you build
fault-tolerant distributed systems much more quickly than you can in
other languages. Some languages support programming models that
are laser-focused on a particular problem, such as using logic to solve
constraints.

6 • Chapter 1. Introduction

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

When you’re through, you will not be an expert in any of these languages,
but you will know what each uniquely has to offer. Let’s get to the languages.

1.2 The Languages

Choosing the languages in this book was much easier than you might
imagine. I simply asked potential readers. When we rolled up all the data,
we had eight potential candidates. I struck JavaScript because it was too
popular and replaced it with the next most popular prototype language, Io.
I also struck Python because I wanted no more than one object-oriented
language, and Ruby was higher on the list. That made room for a surprising
candidate, Prolog, which was a top-ten language on the list. These are the
languages that did make the cut and the reasons I picked them:

• Ruby. This object-oriented language gets high marks for ease of use and
readability. I briefly considered not including any object-oriented lan-
guage at all, but I found myself wanting to compare the different pro-
gramming paradigms to object-oriented programming (OOP), so including
at least one OOP language was important. I also wanted to push Ruby
a little harder than most programmers do and give readers a flavor for
the core decisions that shaped the design of Ruby. I decided to take a
dive into Ruby metaprogramming, allowing me to extend the syntax of
the language. I’m quite happy with the result.

• Io. Along with Prolog, Io is the most controversial language I included.
It is not commercially successful, but the concurrency constructs with
the simplicity and uniformity of syntax are important concepts. The
minimal syntax is powerful, and the similarities to Lisp are sometimes
striking. Io has a small footprint, is a prototype language like JavaScript,
and has a unique message dispatch mechanism that I think you’ll find
interesting.

• Prolog. Yes, I know it’s old, but it is also extremely powerful. Solving a
Sudoku in Prolog was an eye-opening experience for me. I’ve worked
hard to solve some difficult problems in Java or C that would have been
effortless in Prolog. Joe Armstrong, creator of Erlang, helped me gain a
deeper appreciation of this language that strongly influenced Erlang. If
you’ve never had an occasion to use it, I think you will be pleasantly
surprised.

• Scala. One of a new generation of languages on the Java virtual machine,
Scala has brought strong functional concepts to the Java ecosystem. It
also embraces OOP. Looking back, I see a striking similarity to C++,

• CLICK HERE to purchase this book now. discuss

The Languages • 7

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

which was instrumental to bridging procedural programming and OOP.
As you dive into the Scala community, you’ll see why Scala represents
pure heresy to pure functional programmers and pure bliss to Java
developers.

• Erlang. One of the oldest languages on this list, Erlang is gathering
steam as a functional language that gets concurrency, distribution, and
fault tolerance right. The creators of CouchDB, one of the emerging
cloud-based databases, chose Erlang and have never looked back. After
spending a little time with this distributed language, you’ll see why.
Erlang makes designing concurrent, distributed, fault-tolerant applica-
tions much easier than you could have ever thought possible.

• Clojure. Another JVM language, this Lisp-dialect makes some radical
changes in the way we think about concurrency on the JVM. It is the
only language in this book that uses the same strategy in versioned
databases to manage concurrency. As a Lisp dialect, Clojure packs
plenty of punch, supporting perhaps the most flexible programming
model in the book. But unlike other Lisp dialects, the parentheses are
greatly reduced, and you have a huge ecosystem to lean on, including
a huge Java library and widely available deployment platforms.

• Haskell. This language is the only pure functional language in the book.
That means you won’t find mutable state anywhere. The same function
with the same input parameters will give you the same output, every
time. Of all the strongly typed languages, Haskell supports the most
widely respected typing model. Like Prolog, it will take a little while to
understand, but the results will be worth it.

I’m sorry if your favorite language didn’t make the list. Believe me, I’ve
already gotten hate mail from more than a few language enthusiasts. We
included several dozen languages in the survey mentioned earlier. Those
languages that I picked are not necessarily the best, but each one is unique,
with something important to teach you.

1.3 Buy This Book

...if you are a competent programmer who wants to grow. That claim might
seem a little nebulous, but indulge me.

Learning to Learn

Dave Thomas is one of the founders of this publishing company. He has
challenged thousands of students to learn a new language every year. At

8 • Chapter 1. Introduction

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

worst, by learning languages, you’ll learn to fold new concepts back into the
code that you write in your chosen language.

Writing this book has had a profound impact on the Ruby code that I write.
It is more functional and is easier to read with less repetition. I reach for
mutable variables less and do a better job with code blocks and higher-order
functions. I also use some techniques that are unconventional in the Ruby
community, but they make my code more concise and readable.

At best, you could launch a new career. Every ten years or so, programming
paradigms change. As the Java language became more limiting for me, I
experimented with Ruby to better understand its approach to web develop-
ment. After a couple of successful side projects, I pushed my career hard
in that direction and have never looked back. My Ruby career started with
basic experimentation and grew into more.

Help for Dangerous Times

Many of the readers of this book won’t be old enough to remember the last
time our industry switched programming paradigms. Our shift to object-
oriented programming had a couple of false starts, but the old structural
programming paradigm was simply unable to handle the complexity required
for modern web applications. The successful Java programming language
gave us a hard shove in that direction, and the new paradigm stuck. Many
developers got caught with old skills and had to completely retool the way
they thought, the tools they used, and the way they designed applications.

We may be in the midst of another transformation. This time, new computer
designs will be the driver. Five of the seven languages in this book have
compelling concurrency models. (Ruby and Prolog are the exceptions.)
Whether or not your programming language changes right away, I’m going
to go out on a limb and say that the languages in this book have some
compelling answers to offer. Check out Io’s implementation of futures, Scala’s
actors, or Erlang’s “Let it crash” philosophy. Understand how Haskell pro-
grammers leave mutable state behind or how Clojure uses versioning to
solve some of the most difficult concurrency problems.

You can also find insight in surprising places. Erlang, the language behind
the scenes for several of the cloud-style databases, is a great example. Dr.
Joe Armstrong started that language from a Prolog foundation.

• CLICK HERE to purchase this book now. discuss

Buy This Book • 9

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

1.4 Don’t Buy This Book

...until you’ve read this section and agree. I am going to make a deal with
you. You agree to let me focus on the programming language rather than
installation details. My part of the deal is to teach you more in a shorter
time. You’ll have to Google a little more, and you can’t rely on me to support
your installation, but when you’re through the book, you’ll know much more
because I’ll be able to dive deeper.

Please recognize that seven languages is an ambitious undertaking for both
of us. As a reader, you’re going to have to stretch your brain around seven
different syntax styles, four programming paradigms, four decades worth
of language development, and more. As an author, I have to cover an enor-
mously broad set of topics for you. I learned several of these languages to
support this book. To successfully cover the most important details of each
language, I need to make some simplifying assumptions.

I Will Take You Beyond Syntax

To really get into the head of a language designer, you’re going to have to
be willing to go beyond the basic syntax. That means you’ll have to code
something more than the typical “Hello, World” or even a Fibonacci series.
In Ruby, you will get to do some metaprogramming. In Prolog, you’ll solve
a full Sudoku. And in Erlang, you’ll write a monitor that can detect the death
of another process and launch another one or inform the user.

The second that I decided to go deeper than the basics, I made a commitment
to you and a compromise. The commitment: I won’t settle for a superficial
treatment. And the compromise: I won’t be able to cover some basics that
you’d expect to find in dedicated language books. I will rarely go through
exception processing, except where it’s a fundamental feature of the lan-
guage. I will not go into packaging models in detail because we’ll be dealing
with small projects that do not require them. I will not go over primitives
that we don’t need to solve the basic problems I lay out for you.

I Won’t Be Your Installation Guide

One of my biggest challenges is the platform. I have had direct contact from
readers of various books using three different Windows platforms, OS X,
and at least five different Unix versions. I’ve seen comments on various
message boards of many more. Seven languages on seven platforms is an
insurmountable topic for a single author and probably for a multiauthor
book. I can’t support installation for seven languages, so I’m not going to try.

10 • Chapter 1. Introduction

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

I suspect that you’re not remotely interested in reading another outdated
installation guide. Languages and platforms change. I’ll tell you where to
go to install the language, and I’ll tell you what version I’m using. That way,
you’ll be working from up-to-date instructions from the same list as everyone
else. I cannot support your installations.

I Won’t Be Your Programming Reference

We’ve tried hard to get you strong programming reviews for this book. In
some cases, we are lucky enough to get a review from the person who
designed the language. I’m confident that this material will capture the
spirit of each programming language pretty well by the time it has gone
through the entire review process. That said, please understand that I cannot
possibly fully support your endeavors in each language. I would like to make
a comparison to spoken languages.

Knowing a language as a tourist passing through is far different from being
a native speaker. I speak English fluently and Spanish haltingly. I know a
few phrases in three other languages. I ordered fish in Japan. I asked to
find a restroom in Italy. But I know my limitations. From the programming
side, I speak Basic, C, C++, Java, C#, JavaScript, Ruby, and a few others
fluently. I speak dozens of others haltingly, including the languages in this
book. I’m not qualified to support six of the languages on this list. I write
Ruby full-time and have for five years now. But I couldn’t tell you how to
write a web server in Io or a database in Erlang.

I would fail badly if I tried to provide an exhaustive reference for each of
these languages. I could make a programming guide that’s at least as long
as this book on any of the separate languages in here. I will give you enough
information to get started. I will walk you through examples in each lan-
guages, and you’ll see examples of those programs. I will do my best to
compile everything and make sure it all runs. But I couldn’t support your
programming efforts even if I wanted.

The languages on this list all have exceptional support communities. That’s
part of the reason I picked them. In each of the exercises, I try to have a
section that asks you to find resources. This idea is intentional. It will make
you self-reliant.

I Am Going to Push You Hard

This book is going to take you one step beyond your twenty-minute tutorial.
You know Google as well as I do, and you’ll be able to find one of those
simple primers for every language on this list. I will give you a quick

• CLICK HERE to purchase this book now. discuss

Don’t Buy This Book • 11

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

interactive tour. You’ll also get some small programming challenges and
one programming project every week. It’s not going to be easy, but it will be
informative and fun.

If you simply read this book, you’ll experience the flavor of the syntax and
no more. If you look online for the answers before trying to code the exercises
yourself, you’ll fail. You will want to try the exercises first, fully recognizing
that you’ll fail at a few of them. Learning syntax is always easier than
learning to reason.

If you find yourself nervous after reading this description, I suggest that
you put down this book and pick up another. You won’t be happy with me.
You would probably be better served by seven different programming books.
But if you find yourself excited about the prospect of coding better quickly,
let’s push on.

1.5 A Final Charge

At this point, I expected to have some sweeping, motivational words to say,
but it all seemed to boil down to two words.

Have fun.

12 • Chapter 1. Introduction

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/btlang
http://forums.pragprog.com/forums/btlang

