
Extracted from:

Mastering Ruby Closures
A Guide to Blocks, Procs, and Lambdas

This PDF file contains pages extracted from Mastering Ruby Closures, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Mastering Ruby Closures
A Guide to Blocks, Procs, and Lambdas

Benjamin Tan Wei Hao

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Brian P. Hogan
Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-261-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 2

Beautiful Blocks
Blocks are effectively a type of closure. Blocks capture pieces of code that can
be passed into methods to be executed later. In a sense, they act like anony-
mous functions.

Blocks are ubiquitous in Ruby and are one of the defining characteristics of
Ruby—you can immediately tell that it’s Ruby code once you see the familiar
do ... end or curly braces. It’s virtually impossible to write any meaningful Ruby
program without using blocks. In order to understand and appreciate real-
world Ruby code, it’s imperative that you understand how blocks work and
how to use them.

Rubyists often wax lyrical about blocks—and for good reason. They are a
powerful language construct that leads to beautiful and succinct code. They
allow you to modify specific behavior without changing the general pieces of
your code. This means that you get to do more with less code.

Blocks are also instrumental in crafting domain-specific languages, or DSLs.
This ability has been exploited to great effect, especially in tools such as Rake
and Rails.

There are two main objectives in this chapter. The first is to make sure you
understand how blocks are used. In order to do that, you will learn about the
yield keyword and the block_given?() method by writing your own methods that
take blocks as input. You will also learn what block variables are, and their
relationship to blocks acting as closures.

The second objective is to get you well acquainted with the various ways that
blocks are used in Ruby—block patterns, if you will. You will write code that
enumerates a collection such as an array or a hash. Having the skills to use
blocks in conjunction with the classes in the Ruby Standard Library will save

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

you precious time, especially when you start to realize how blocks can make
methods extremely versatile.

However, blocks have a lot more to offer than going through the elements of
a collection. Other block patterns that are pervasive in real-world Ruby code
include resource management, object initialization, and the abstraction of
pre- and post-processing. You will be writing code that explores each of these
patterns in the sections that follow.

Along the way, you will get to work with some meta-programming goodness
and learn the secret to creating Ruby DSLs.

By the end of this chapter, you will gain a deeper appreciation of blocks and
understand how to use them effectively in your own code. You will be confident
in writing your own code that uses blocks. You will also have an understanding
of how DSLs are built in Ruby, and you won’t be intimidated when you look
at a foreign-looking DSL.

Separating the General from the Specific
The ability to encapsulate behavior into blocks and pass it into methods is
an extremely useful programming technique. This lets you separate the gen-
eral and specific pieces of your code. Open irb and let’s explore what this
separation of concerns looks like.

Suppose you have a range of numbers from 1 to 20, and you’re interested in
only getting the even numbers. In Ruby, this is how you can do it:

>> Array(1..20).select { |x| x.even? }
=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Later, you decide that the list is too big and you want to add another condition:
the even numbers must also be greater than 10:

>> Array(1..20).select { |x| x.even? and x > 10 }
=> [12, 14, 16, 18, 20]

Notice that the only code that you had to change was contained within the
blocks. That is, the actual “business logic” piece. You didn’t have to implement
your own special version of Array#select() in order to cope with a change in
requirements. This also comes up pretty often with sorting.

Imagine that you’re working on an e-commerce site that sells sports shoes,
and you want to display a selection of the products on the main page:

>> require 'ostruct'

>> catalog = []

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

>> catalog << OpenStruct.new(name: 'Nike', qty: 20, price: 99.00)
>> catalog << OpenStruct.new(name: 'Adidas', qty: 10, price: 109.00)
>> catalog << OpenStruct.new(name: 'New Balance', qty: 2, price: 89.00)

It’s plain to see that we have a pretty wide selection of footwear. Now, the
boss wants to display the products by the lowest priced first:

>> catalog.sort_by { |x| x.price }
=> [#<OpenStruct name="New Balance", qty=2, price=89.0>,

#<OpenStruct name="Nike", qty=20, price=99.0>,
#<OpenStruct name="Adidas", qty=10, price=109.0>]

What if now she wants the products with the highest quantity to be displayed
first?

>> catalog.sort_by { |x| x.qty }.reverse
=> [#<OpenStruct name="Nike", qty=20, price=99.0>,

#<OpenStruct name="Adidas", qty=10, price=109.0>,
#<OpenStruct name="New Balance", qty=2, price=89.0>]

In both instances, all you had to change was the code in the block. In fact,
you didn’t have to change the implementation of Enumerable#sort_by(). You were
able to trust that the method would do its job provided you gave it a reasonable
sorting criteria to work with.

So how is this possible? With yield.

• Click HERE to purchase this book now. discuss

Separating the General from the Specific • 9

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

